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Abstract

We are concerned with formal models of reasoning under uncertainty. Many ap-
proaches to this problem are known in the literature e.g. Dempster-Shafer theory,
bayesian-based reasoning, belief networks, fuzzy logics etc. We propose rough mere-
ology as a foundation for approximate reasoning about complex objects. Our notion
of a complex object includes approximate proofs understood as schemes constructed
to support our assertions about the world on the basis of our incomplete or uncertain
knowledge.

1 Introduction

We present a formal model of approximate reasoning about processes of syn-
thesis of complex systems. First ideas of this approach have been presented in
[15], [24], [25], [27], [28], [29], [30], [31]. Our research has been stimulated by
the demand for solutions of the following groups of problems, estimated in [1]
to be crucial for the progress in the area of automated design and manufac-
turing. These groups of problems are concerned with the treatment of:

Group 1. Poorly defined, poorly understood or incomplete design specifica-
tions.

Group 2. Negotiations among interacting goals and constraints.
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Group 3. Decomposition of problems into subproblems (including the prob-
lem of formation of a hierarchical scheme for solving the problem).

Group 4. Adaptation problems (including redesign and reuse problems).

Group 5. Problems of knowledge representation and reasoning about knowl-
edge (including mapping of functions to structures and evaluating partial so-
lutions at different levels of the synthesis scheme).

Design as well as manufacturing processes involve the space of specifications
and the space of structures. These spaces are present in our approach at each
local process site and they meet each other at the inventory level where prim-
itive (indecomposable ) specifications are converted into primitive (inventory)
constructs.

Our analysis can be applied to the following fields concerned with complex
systems:

Field 1. Computer-aided design [1], [32], [41] or computer-aided manufac-
turing [1], [4], [14], [41]. In this field, a complex system is synthesized , or
designed, from elementary subsystems.

Field 2. Adaptive control of complex systems [13], [18], [28]. In this field,
given specification (constraint) is maintained by adaptive adjustment of spec-
ifications for some subsystems.

Field 3. Business re-engineering [2], [22] (including software reuse). In this
area, a complex system is adaptively modified according to a current require-
ment.

Field 4. Cooperative and distributive problem solving [7], [8], [9], [10], 14],
[32], [41], [47-48]. In this field a complex system of local agents is organized
from a set of agents in order to synthesize a solution to a problem.

The accessible knowledge on the basis of which constructs in the synthesis
process are selected and classified (evaluated) is as a rule incomplete, poorly
defined, or inconsistent. In consequence, we are bound to eveluate the basic
ingredients of the synthesis process approximately only, in terms of values of
some uncertainty measures which express a degree in which a given construct
satisfies a given specification and in terms of some functors which propagate
uncertainty measures along the synthesis scheme.

Many formal models of approximate reasoning are described in the literature
e.g. Dempster-Schafer theory of evidence [33], [34], [37], bayesian reasoning
[23], [34], belief networks [23], [34], many-valued logics [11], and fuzzy logics
[11], non-monotonic logics [34] and neural network logics [17].



We can extract from these formal models a general scheme for approximate
reasoning.

It is not suprising that this scheme encompasses classical models of reasoning
adopted in mathematical logic [19].

The scheme for approximate reasoning can be represented by the following
tuple

Appr_Reas = (Ag, Link,U, St, Dec_Sch, O, Inv, Unc_mes, Unc_prop)
where
(i) The symbol Ag denotes the set of agents (or agent names).

(ii) The symbol Link denotes a finite set of non-empty strings over the al-
phabet Ag; for v(ag) = agrags...agrag € Link, we say that v(ag) defines an
elementary synthesis scheme synt(agy, ags, .., age, ag) = synt(v(ag)) with the
root ag and the leaf agents agy,ags, ..., agr. The intended meaning of v(ag)
is that the agents agy, ags, .., agr are the children of the agent ag which can
send to ag some constructs for assembling a complex artifact. The relation
ag < ag' iff ag is a leaf agent in synt(v(ag)) for some v(ag) is usually assumed
to be at least an ordering of Ag into a type of acyclic graph; we assume for
simplicity that (Ag, <) is a tree with the root root(Ag) and leaf agents in the
set Leaf(Ag).

(iii) The symbol U denotes the set {U(ag) : ag € Ag} of universes of discourse
(universes of constructs) of agents.

(iv) The symbol St denotes the set {St(ag) : ag € Ag} of standard sets of
agents: for ag € Ag, the set St(ag) = {st(ag):} C U(ag) is the set od standard
constructs (objects ) of the agent ag.

(v) The symbol O denotes the set {O(ag) : ag € Ag} of operations with
O(ag) ={o0i(ag)} the set of operations at ag.

(vi) The symbol Dec_Sch denotes the set of decomposition schemes, a partic-
ular decomposition scheme dec_sch; is a tuple

({st(ag); : ag € Ag},(0;(ag) : ag € Ag})
which satisfies the property that if v(ag) = agi1ags...agrag then
oj(ag)(st(agi)j, st(aga)j, -, st(agr);) = st(ag);.

The intended meaning of dec_sch; is that when any child ag; of ag submits



the standard construct st(ag;); then the agent ag assembles from

st(agr);, st(agz)j, .., st(age);

the standard construct st(ag); by means of the operation o;(ag). The rule
dec_sch; establishes therefore a decomposition scheme of any standard con-
struct at the agent root (Ag) into a set of consecutively simpler standards at all
other agents. The standard constructs of leaf agents are primitive standards.
We can regard the set of decomposition schemes as a skeleton about which
the approximate reasoning is organized. Any rule dec_sch; conveys a certain
knowledge that standard constructs are synthesized from specified simpler
standard constructs by means of specified operations. This ideal knowledge is
a reference point for real synthesis processes in which we deal as a rule with
constructs which are not standard: in adaptive tasks, for instance, we process
new, unseen yet, constructs (objects, signals).

(vii) The symbol Inv denotes the inventory set of primitive constructs.

(viii) The symbol Unc_mes denotes the set {Unc_mes(ag) : ag € Ag} of
uncertainly measures of agents, where Unc_mes(ag) = {p;(ag)} and p;(ag)
C Ulag) x U(ag) x V(ag) is a relation (possibly function) which determines a
distance between constructs in U(ag) valued in a set V(ag); usually, V(ag) =
[0, 1], the unit interval.

(ix) The symbol Unc_prop denotes the set of uncertainty propagation rules
{Unc_prop(v(ag)) : v(ag) € Link}; for v(ag) = agiagz...agrag € Link, we
have in Unc_prop(v(ag)) the functions f; :V(ag1) x V(agz) x ... x V(agy) —
V(ag) such that

if p;(ag)(xi,stlagi);) =e; fori =1,2,..,k

then Nj(ag)(oj(xlax% '-7xk)75t(ag)j) =e2 fj(€17527 "7516)'

The functions f; propagate uncertainty measures from children of ag to ag.
The process of synthesis begins at leaf agents which receive primitive con-
structs and calculate their distances from their respective standards; then the
primitive constructs are sent to the parent nodes of leaf agents along with
vectors of distance values. The parent nodes synthesize complex constructs
from the sent primitives and apply the uncertainty propagating functions in
order to calculate from the sent vectors the new vectors of distances from their
respective standards. Finally, the root agent root(Ag) receives the constructs
from its children from which it assembles the final construct and calculates
the distances of this construct from the root standards. On the basis of the
found values, the root agent classifies the final construct.

The above very general scheme is adapted to the particular cases. We would



like to interpret this scheme taking as a particular instance the case of a
fuzzy controller [11]. In its version due to Mamdani [18], in its simplest form,
we have two agents: input, outpul, and standards of agents are expressed in
terms of linguistic labels likepositively small, negative, zero etc. Operations
of the agent oulput express the control rules of the controller e.g. the sym-
bol o(positively small,negative) = zero is equivalent to the control rule
of the form if st(input); is positively small and st(input); is negative then
st(output)y is zero. Uncertainty measures of agents are introduced as fuzzy
membership functions [11], [46] of the fuzzy sets corresponding to standards
i.e. linguistic labels. An input construct (signal) z(input) is fuzzified i.e. its
distances from input standards are calculated and then the fuzzy logic rules
are applied [11]. By means of these rules uncertainty propagating functions
are defined which allow for calculating the distances of the output construct
z(output) from the output standards. On the basis of this distances the con-
struct z(output) is evaluated by the defuzzification procedure.

Our approach is anchored in rough set theory [20]. This theory assumes that
constructs in the universe of discourse are perceived by means of the available
information and in consequence these constructs are perceived as collections
of constructs which bear the same information about them. The resulting
granularity of knowledge is responsible for vagueness of knowledge. We are
not able therefore to perceive individual constructs but their collections; we
cannot in consequence discuss the membership relation but only containment
relation. The counterpart of the notion of a fuzzy membership function would
be the notion of a partial containment.

The formal treatment of partial containment is provided by the notion of a
rough inclusion [24], [27], [29]. Rough inclusions are construed as most general
functional objects conveying the intuitive meaning of the relation of being a
part in a degree. In particular, the relation of being a part in the greatest
possible degree is the relation of being a (possibly, improper) part in the sense
of mereology of Stanislaw Lesniewski [16]. We can regard therefore a rough
inclusion as a measure of departing from a decomposition scheme represented
by the induced model of mereology of Lesniewski.

In mereology of Lesniewski the notions of a subset and of an element are
equivalent and therefore we can interpret rough inclusions as global fuzzy
membership functions on the universe of discourse which satisfy certain general
requirements responsible for their regular mathematical properties.

We take rough inclusions of agents as measures of uncertainty in their respec-
tive universes. We would like to make the following two remarks.

Remark 1.1. Any non-leaf agent ag is able to establish a local decomposition
scheme of complex constructs in its universe into some simpler parts by means



of its rough inclusion p(ag) and the relation part (of being a (proper) part)
in the induced model of mereology of Lesniewski.

Remark 1.2. The mereological relation of being a part is not transitive glob-
ally over the whole synthesis scheme as distinct agents use distinct mereolog-
ical languages.

The process of synthesis of a complex system by a scheme of agents consists
in our approach of the two communication stages viz. the top - down commu-
nication/negotiation process and the bottom - up communication process. We
outline the two stages here.

In the process of top - down communication, a requirement @ received by the
scheme from an external source is decomposed into approximate specifications
of the form

(®(ag),c(ag))

for any agent ag of the scheme. The intended meaning of the approximate spec-
ification (@(ag),e(ag)) is that a construct x € Ulag) satisfies (®(ag),c(ag))
iff there exists a standard st(ag) with the properties that st(ag) satisfies the
predicate ®(ag) and

plag)(z, st(ag)) = e(ag).

The uncertainty bounds of the form ¢(ag) are defined by the agents viz. the
root agent root(Ag) chooses e(root(Ag)) and ®(root(Ag)) as such that ac-
cording to it any construct z satisfying (@(root(Ag),e(root(Ag)) should sat-
isfy the external requirement @ in an acceptable degree; the other agents
choose their approximate specifications in negotiations within each elemen-
tary scheme synt(v(ag)) for v(ag) € Link. The result of the negotiations
is succesful when there exists a decomposition scheme dec_sch; such that
for any v(ag) € Link, where v(ag) = agiags...agrag, from the conditions
plag:)(xi,stlag);) > elag;) and st(ag;); satisfies ®(ag;) for ¢« = 1,2, .., k, it
follows that p(ag)(oj(z122,..,2k), st(ag);) > e(ag) and st(ag); satisfies ®(ag).

The uncertainty bounds e(ag) are evaluated on the basis of uncertainty prop-
agating functions whose approximations are extracted from information sys-
tems of agents.

Any leaf agent realizes its approximate specification by choosing in the subset
InvNU(ag) of the inventory of primitive constructs a construct satisfying this
specification.

The bottom-up communication consists of agents sending to their parents the
chosen constructs and vectors of their rough mereological distances from the
standards. The root agent root(Ag) assembles the final construct.



Our approach is analytic in the sense that all objects necessary for the synthe-
sis process are extracted from the empirical knowledge of agents represented
in their information systems; it is also intensional in the sense that rules for
propagating uncertainty are local as they depend on a particular elementary
synthesis scheme and on a particular local standard.

Our presentation is divided into five sections. Preliminary notions of the rough
set theory and mereology of Lesniewski are collected in Section 2 and Section 3.
In Section 4 rough mereology is introduced in the form of the logic L,.,. Prop-
erties of models of L,,,, including properties of rough inclusions, are studied in
Section 5. The final Section 6 brings a more detailed analysis of approximate
reasoning by a system of distributed agents.

2 Preliminaries: Rough Set Theory

The formalization of vagueness within the framework of rough set theory is
based on the assumption that objects are perceived by means of the informa-
tion about them encompassed in a set of available features or attributes [20];
this informal idea leads to the notion of the information system.

An information system is a pair A = (U, A) where U is a finite set called the
universe of objects and A is a finite set of atiributes; any attribute a € A is
a mapping on the universe /. We denote by the symbol V, the range of the
attribute a; the set V, is called the value set of a. We let V. = U{V, : a € A}.

In consequence of the above assumption some objects may become indis-
cernible. For an object + € U we define for a set B C A the informa-
tion vector Infg(z) = {(a,a(z)) : a € B}. We say that objects z,y € U
are B-indiscernible when Infg(z) = Infg(y); the B-indiscernibility relation
IND(B) is defined as follows: IND(B) = {(z,y) € U x U : Infg(z) =
Infs(y)}. The relation IND(B) is an equivalence relation and we denote by
the symbol [z]g the equivalence class of this relation which contains z. We
will use the term concept for subsets of the universe U; for a concept X C U
we define the two approximations of X relative to a set B C A:

BX={zcU:[z]pCX}and BX ={zcU:[z]gNX #0}.

The concept BX is called the B-lower approximation of X and the concept
BX is called the B-upper approzimation of X. We collect in the following
proposition (cf.[20]) the basic properties of approximations of X which follow
directly from their definitions.



Proposition 1 (i) BX C X C BX;
(ii) B BX = BX and BBX = BX.
O

The difference BNg(X) = BX — BX is called the B-boundary region of
X. In the case when BNg(X) = (0 the concept X is said to be B-ezact,
otherwise X is B-rough. The concepts BX, BX and BNg(X) have clear
epistemic interpretation viz. the concept BX collects all objects which belong
certainly in X, the concept U/ — BX collects all objects which certainly do
not belong in X and the concept BNp(X) collects all objects which are vague
with respect to X i.e. have representatives both in X and in the complement
of X. It follows that BNg(X) is a non-sharp boundary of X in the sense of
Frege (cf.[20]).

Given a concept X, the numerical characterization of a degree in which an
object = belongs in the concept X relative to the knowledge represented by
an attribute set B C A is provided by the rough membership function px g
[21]. For BC A, X CU and z € U, we let

1x.5(2) = Ml
where || 7| denotes the cardinality of a set Z. In the case when B = A we

use the symbol px instead of the symbol px 4. The following proposition [21]
collects the basic properties of the rough membership functions.

Proposition 2 The rough membership functions of the form ux p have the
following properties

(i) uxp(z)=1if r € BX;

(ii) uxp(z) =0 iff € BX;

(ii1) 0 < px p(z) <1 iff v € BX — BX;

(iv) of (x,y) € IND(B) then px p(z) = px p(y);
(v) pxp(x) =1 —pv—xB(x);

(vi) pxuy,p(x) = max{px B(x), py.B(x)};

(vii) pxny,p(z) < min{ux g(z), py,p()};



(viii) for any pairwise disjoint collection P of concepts,
pops(z) = S {py(z): Y € P}
O

We extend the notion of a rough membership function to a standard rough
inclusion py on the power set exp(U) of U. To this end, we define py : exp(U) x
exp(U) — [0, 1] by letting

po(X,Y) = ”ﬁ;ﬁ” in case X # () and pp(0,Y)=1.
We denote by the symbol Stand the class of pairs of the form (U, i) where
U is a finite set and pg is the standard rough inclusion on the set U.

The reader will find in [26], [35], [36], [38], [39] a deep discussion of rough
set-theoretic tools for decision rules generation and for synthesis of adaptive
decision systems.

3 Preliminaries: Mereology of Lesniewski

The importance for logic of the fundamental study of relations of being a part
was already stressed by Aristotle. The first modern mathematical system based
on the notion of a relation of being a (proper) part was proposed by Stanislaw
Lesniewski [16]. We recall here the basic notions of the mereological system
of Lesniewski; in the next section the mereological system of Lesniewski will
be extended to the system of approximate mereological calculus called rough
mereology.

We consider a finite set U/; we assume that U is non-empty. A binary relation
7 on the set U will be called the relation of being a (proper) part in the case
when the following conditions are fulfilled

(P1) (irreflexivity) for any = € U, it is not true that zmx;
(P2) (transitivity) for any triple z,y,z € U, if xwy and ynz, then znz.
It follows obviously from (P1) and (P2) that the following property holds

(P3) for any pair z,y € U, if xmy then it is not true that ymz.

In the case when zmy we say that the object x is a (proper) part of the object
y. The notion of being (possibly) an improper part is rendered by the notion



of an ingredient [16]; for objects z,y € U, we say that the object z is a -
ingredient of the object y when either zmy or + = y. We denote the relation
of being a m-ingredient by the symbol ingr(m); hence we can write

(I1) for z,y € U, x ingr(m) y iff xwy or x = y.

It follows immediately from the definition that the relation of being an ingre-
dient has the following properties:

(12) (reflexivity) for any = € U, we have z ingr(m) x;

(I3) (weak antisymmetry) for any pair z,y € U, if x ingr(n) y and y ingr(m)
x then x = y;

(I14) (transitivity) for any triple z,y,z € U, if x ingr(7) y and y ingr(n) =z
then x ingr(m) .

We will call any pair (U, 7) where U is a finite set and 7 a binary relation on the
set U which satisfies the conditions (P1) and (P2) a pre-model of mereology.

We now recall the notions of a set of objects and of a class of objects [16].
For a given pre-model (U, 7) of mereology and a property m which can be
attributed to objects in U, we will say that an object z is an object m (x
object m, for short) when the object x has the property m. The property m
will be said to be non-void when there exists an object x € U such that x
object m. Consider a non-void property m of objects in a set U where (U, )
is a pre-model of mereology.

An object x € U is said to be a set of objects with the property m when the
following condition is fulfilled:

(SETm) for any y € U, if y object m and y ingr(m) x then there exist z,t € U
with the properties: z ingr(m) y , z ingr(m) t, t ingr(m) x and t object m.

We will use the symbol z set m to denote the fact that an object z is a set of
objects with the property m.

Assume that x set m; if, in addition, the object x satisfies the condition

(CLm) for any y € U, if y object m then y ingr(m) x then we say that the
object x is a class of objects with the property m and we denote this fact by
the symbol z class m. We will say that a pair (U, 7) is a model of mereology
when the pair (U, 7) is a pre-model of mereology and the condition

(EUC) for any non-void property m of objects in the set U, there exists a
unique object = such that x class m holds.

10



The following proposition [16] recapitulates the fundamental metamathemat-
ical properties of mereology of Lesniewski; observe that in mereology there is
no hierarchy of objects contrary to the Cantorian naive set theory. We denote
for an object © € U by the symbol ingr(z) the property of being an ingredient
of  (non-void in virtue of (12)) and for a property m, we denote by the symbol
s(m) the property of being a set of objects with the property m.

Proposition 3 For any x € U,
(i) x class (ingr(z));
(i1) x class(s(m)) iff x class m;
(iii) x set (s(m)) iff x sel m.
O

A more general proposition will be proved in Section 4. We finally recall the
notions of an element and of a subset in mereology of Lesniewski. For z,y € U,
we will say that

(SUB) the object x is a subset of the object y when for any z € U,
if z ingr(m) x then z ingr(m) y
and

EL) the object z is an element of the object y when there exists a non-void
J J Y
property m such that x object m and y class m.

The following proposition which is a direct consequence of (14) and Proposition
1(i) in Section 3 establishes the fact that in any model of mereology the notion
of a subset is equivalent to the notion of an element.

Proposition 4 Assume that a pair (U, ) is a model of mereology. Then the
following statements are equivalent for any pair v,y € U

(i) x ingr(m) y;
(ii) the object x is an element of the object y;
(iii) the object x is a subsel of the object y.

d

The reader will consult [43] for ramifications of mereology of Lesniewski and
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[5], [6], [45] for a development of the mereological calculus based on the pred-
icate " connecled to”.

4 Rough Mereology

An approximate mereological calculus called rough mereology has been pro-
posed as a formal treatment of the hierarchy of relations of being a part in
a degree. We begin with an exposition of rough mereological calculus in the
form of a logic L,,,.

4.1 Syntax of L.,

It will be the standard syntax of the predicate calculus [19] in which we will
have the following basic ingredients:

Variables: x, x1, zo,..., Y, Y1, Y2,..., 2, 21, 22, ... of type sel_element and r, ry, rq,...

8,81, 83, ... of type lattice_element,
Constants: w of type lattice_element,

Predicate symbols, function symbols: < of type (lattice_element, lat-
tice_element) and p of type (set_element, set_element, lattice_element);

Auxiliary symbols: propositional connectives: V, A, =, =, quantifier sym-
bols: ¥V, 4 and commas, parentheses.

Formulae: atomic formulae are of the form u(z,y,r), s < r and formulae are
built from atomic formulae as in the predicate calculus.

Axioms: the following are axioms of L,,,
(A1) Va.u(z, z,w);
(A2) Ve Vy{u(z,y,w) = Vs VrVz.[u(z,z,s) A u(z,y,r) = (s <r)]};
(A3) VaVy{u(z,y,w) A ply, z,w) =
Vs VrVz.u(z,z,8) AN ply, z,r) = (s < r)]};

(A4) JzVy.u(z,y,w);

12



(A5) VaVy{[Ve[[Fu(ulz,u,w) A plz, 2, w)] =
3t.(Fw.(—p(t, w,w)) A p(t, z,w) A p(l,y,w)] = p(z,y, )}
and the axiom schemata (A6), for n = 2,3,.... where
(A6),
Va1.Vag... Vo, 3y (T, 22, ..y Ty y) A

B, oy oy Ty Y) A Yu(@1, T2,y ooy Ty YY)

where
(21, T2y e Ty y) : Vo {[Bt(~plz, t,w)) A plz,y,w)] =
S 3. [(3u.(~pa(w, u,w))) A (w0, 2,w) A p(w, 21,0)]
Bl @20 ey 0 y) 1, 9,00) A2, 5,0) A oo A, o0
Yo T1, T2y ooy Ty )

Vedlan(xr, 2y oy @ny 2) A Bu(21, 22y oy 20, 2)] = p(y, 2, w) }.

4.2 Semantics of L,

We will call an interpretation of L,,, a triple M = (UM LM FM) where UM
is a finite set, LM is a (complete) lattice with the lattice partial order <Mand
with the greatest element 2™ and F'™ is a mapping which assigns to constants
and predicate symbols of L,,, their denotations in M in the following manner:
FM(w) = M PM() =<Mand FM(p) = uM C UM x UM x LM where the
relation pM C UM x UM x LM is a function i.e. p™ : UM x UM — M,

An M-value assignment ¢ is a mapping which assigns to any variable z of L,,,
of type set_element the element g(z) € UM and to any variable r of L,,, of
type lattice_element the element g(r) € LM. For an M-value assignment g, a
variable z of L,., of type set_element and an element v € UM, we denote by the
symbol g[u/z] the M-value assignment defined by the conditions: g[u/z](v) =
g(v) in case v # x and glu/z|(x) = u; the same convention will define g[p/r|
in case of a variable r of type lattice_element and p € LM.

For a formula o of L,,,, we denote by the symbol [a]¥¥ the meaning of the
formula o in the model M relative to an M-value assignment g by the following
conditions

13



(M1) [z, y, )M = true iff pM(g(x), g(y)) = p for some p > g(r);
(M2) [s < ]9 = true iff g(s) <M g(r);

(M3) [a V B]M9 = true iff [a]M9 = true or [B]M9 = true;

(M4) [~a]M9 = true iff [o]M9 = false;

(M5) [3z.a]M9 = true iff there exists u € UM such that [o]"914/7] = {rye;

(M6) [Fr.a]™9 = true iff there exists p € LM such that [a]M9P/7] = trye.

It follows that the intended meaning of a formula u(z,y,r) is that "the object
x is a part of the object y in degree at least r”.

A formula « is true in an interpretation M iff a is M, g-true (i.e. [a]*9 = true)
for any M-value assignment g.

An interpretation M is a model of L,,, iff all axioms (A1)-(A6) are true in M.
4.3 Deduction rules

We will give the basic deduction rules for L,,,; recall that a deduction rule in
the form 22== is said to be valid in a model M iff for any M-value assignment
g if the premises a, 3, ... are M, g - true then the conclusion v is M, g-true.
The deduction rule is valid when it is valid in any model M of L,,,. We have
the following deduction rules

(Dl) wlzy,w),u(y,z,w)

w(z,z,w)

(D2> ,u(y,z,w),—wgy,l‘,w) .

—u(z,z,w) )

(D3) #1I7y7wl7_'p'!z7val .

—u(z,z,w)

Proposition 5 Deduction rules (D1)-(D3) are valid.

Proof

We consider a model M = (UM LM FM) along with an M-value assign-
ment g. We prove the validity of (D1); proofs for (D2), (D3) go along similar
lines. Assume that [u(z,y,w)|M9 = true = [u(y, z,w)|M 9 ie. tM(g(z), g(y)) =

14



OM = M (g(y), g(2)). By the truth of (A2) in M, we have ™ (g(z), g(2)) >M
WM (g(2),9(y)) hence u™ (gx),g()) = M ie. [u(z, z,)] M9 = irue. This
concludes the proof.

4.4 The consistency of axioms

We show the consistency of the axiom system (A1)-(A6) by revealing a class of
models of L,,,. We denote by Stand the class consisting of pairs (U, u) where
U is a finite set and gy is the standard rough inclusion on the set exp(U). For
a pair M = (U, uy) , we let LM = [0,1], the unit interval , <M=the natural
linear ordering on [0,1] , p™ = py and UM = exp(U).Then we denote by
Stand_Mod the class of triples M* =(UM LM FM) where M = (U, uyy) and
FM(w) =1, FM(<) =<M and FM(u) = pyy. We have the following

Proposition 6 Any M* =UM M FM) in Stand_Mod is a model of L,,,.

Proof

We consider M* =(UM M FM) in Stand_Mod and an M*-valued assign-
ment g. Concerning (Al), we have up(g(z),g(z)) = 1. Concerning (A2),
when up(g(z),g9(y)) = 1 then either g(z) = 0 and pp(g(z),9(y)) > 0 =
po(g(z),g(x)) in case g(z) # 0 or pu(g(2).9(y)) = 1 > pw(g(z),g(x)) in
case g(z) = (. The case of (A3) is similar to that of (A2). The truth of
(A4) is witnessed by the M*—value assignment g[()/z]. For (A5), consider
g(x) = X £ 0,9(y) = Y (when X = () there is nothing to prove) with the
property that for any Z # () with the property pp(Z,X) = 1 there exists
T # 0 such that py(T,7) = 1 = py(T,Y). This implies that py(X,Y) = 1,
otherwise we would obtain contradiction with the assumption by taking the
M*-valued assignment g[X — Y/z]. Finally, in case of (A6) for an integer n,
given an M*-valued assignment g = g[X1/z1, X3/22, .., X,,/x,] one checks eas-
ily that ¢[Y/y] where Y = X; U X3 U ...U X, witnesses the truth of (A6),.

5 Rough inclusions

In this section we are concerned with the structure of models of L,,, induced
by rough inclusions. We show that in any model of L,,, we have a canonical
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model of mereology of Lesniewski introduced by means of the rough inclu-
sion of this model. We apply the Tarski idea of fusion of sets [43] in order
to define in a model of L,, the structure of a (complete) Boolean algebra
which contains isomorphically the quasi-boolean structure (without the least
element) corresponding to the model of mereology of Lesniewski. We show
that the rough inclusion satisfies with respect to boolean operations of join
and meet the same formal conditions which the rough membership function
satisfies with respect to the set-theoretic operations of union and intersection.

We study relations of rough inclusions with many-valued logic and fuzzy logic;
in particular, we show that when the rough inclusion is regarded as a fuzzy
membership function then any fuzzy containment induced by a residual im-
plication [11] is again a rough inclusion and moreover, the hierarchy of objects
set by the induced model of mereology of Lesniewski is invariant under these
fuzzy containment operators.

We are concerned also with the problem of consistency of deduction rules of
the form

(Df) lu(gg’z,f(r,s))

where f is a functional symbol of type (lattice_element, lattice_element, lat-
tice_element).

We demonstrate the consistency of (A1)-(A6)+(Dy) by revealing a class of
models in which the deduction rule (Dy) is valid under an appropriate inter-
pretation of f.

9.1  Rough inclusions: reduced models and Lesniewski’s mereology

Given a model M of L,,,, M = (UM LM FM) we will call the function
pM UM x UM —s [M the M-rough inclusion. We define a relation congr(u™)
on the set UM by letting for u,w € UM : u congr(p™) w iff uM(u,w) = OM
= pM(w,u) . The following proposition, whose proof follows immediately by
(A2) and (A3) and is therefore omitted, establishes the basic properties of the
M

)

relation congr(p™) and demonstrates it to be a u™ —congruence.

Proposition 7 The relation congr(u™) is an equivalence relation on the set

UM and we have

(i) if w congr(uM) w then uM (v, w) = uM (v, u);
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(ii) if w congr(p™) w then p™ (u,v)= pM(w,v)
for any triple u,v,w € UM,

O
For u € UM we denote by u, the equivalence class of the relation congr(u™)
which contains u. It follows from prop 1 in Section 5 that the rough inclusion

can be factored throughout the relation congr(u™) i.e. we define the quotient
set in = UM [congr(p™) and the quotient function

M%:USJXU#]LW%LM

by letting ,uf\f(u#,w#) = pM(u,w); clearly, the pair (in,,uf\f) introduces a
model M. of L,,. In the sequel we will always work with a fixed reduced
model M. We denote by the symbol n,, the null object i.e. the object existing
in virtue of (A4) and such that p™(n,,w,) = 2M for any w, € in. We will
write u, #, n, to denote the fact that the object u, is not the null object.
Let us recall that the existence of a null object in a model of mereology of
Lesniewski reduces the model to a singleton, as observed in Tarski [42]. In the

sequel, for simplicity of notation, we will write g in place of pM, U in place

of UM

woo
inclusion when it satisfies the condition p(xz,n) = 0 for any non-null object z;

we observe that any standard rough inclusion is strict.

v in place of u, etc. We will call the rough inclusion p a strict rough

We now show how the rough inclusion g introduces in U a model of mereology
of Lesniewski. To this end, we define a binary relation part(y) on the set U
by letting

u part(p) w iff p(u,w) = 2M and it is not true that p(w,u) = M.

Then we have the following proposition whose straightforward proof is omitted

Proposition 8 (i) the relation part(u) satisfies the conditions (P1) and (P2);
(i) the relation ingr( part(p) ) satisfies the following for any pair u,w € U:
u ingr(part(p)) w iff p(u,w) = M.

O

It follows from the proposition above that (U, part(u)) is a pre-model of mere-
ology. We now define in the model M. for any collection ¥ of objects in U,
the notions of a set of objects in ¥ and of a class of objects in ¥. We will say
then that u € U is a set of objects in ¥, u set ¥ for short, when
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(S1) for any w #, n such that w ingr(part(y) ) u there exist v #, n and
t € ¥ such that v ingr(part(p) ) w, v ingr(part(p)) t, t ingr(part(p) ) u;

if in addition, we have
(S2) t ingr(part(p) ) u for any t € ¥ ;

(S3) for any ¢, if ¢ satisfies (S1) and (S2) with ¥ then u ingr(part(p) )t

then we say that u is a class of objects in W, u class ¥ for short. It follows
from (A6) that for any collection ¥ there exists a unique object u such that
u class ¥ and there exists objects of the form set ¥. We have therefore

Proposition 9 The pair ( U — {n},part(p) T (U — {n}) x (U —{n}) is a

model of mereology.

O
We now show that in the model M. (fixed arbitrarily) of L,,, the following
generalization of prop 1 from Section 3 holds. The symbol Ingr(u) denotes

the collection of part(p)-ingredients of u, and Set¥ stands for the property of
being a set of objects in ¥.

Proposition 10 For any u € U we have
(i) u class Ingr(u);

(i1) if u class SetW then u class W¥;

(ii1) if u set Set¥ then u set ¥,

(tv) if u class ¥ then u class SetW.

Proof

As proofs of (ii)-(iv) are carried out on similar lines , we observe that (i)
follows immediately from the definition and we prove (ii) . To prove (ii), we
assume that u class Set¥. Let v #, n and v ingr(part(y) ) u. Clearly, u set
Set¥ and thus in virtue of (S1) there exist w,t € U such that w #, n, w
ingr(part(p) ) v, w ingr(part(p) ) t, t ingr(part(p) ) u and t set ¥. Hence,
again by the truth of (S1), there exist p,q € U such that

p #u iy p ingr(part(p)) w, p ingr(part(p)) q, q ingr(part(p)) t and q € ¥.

18



Then we have q ingr(part(u) ) v and thus u set ¥. It follows that u satisfies
(S1) with .

Now, we consider any g € ¥; clearly, ¢ set ¥ and by the truth of (S2) we have
q ingr(part(p) ) u i.e. u satisfies (S2) with ¥. Finally, assume that w € U
satisfies the condition u(u,w) < 2M ; it follows by (S3) that either w does
not satisfy (S1) or w does not satisfy (S2) with Set ¥. We consider the two

cases.

Case 1. w does not satisfy (S2). There exists z € U, such that u(z,w) < 2M
and z set W.

Subcase la. We assume that for any ¢t € U if ¢t #, n , t ingr(part(u)) z and
t € ¥, then t ingr(part(p)) w. We consider ¢t € U such that ¢t #, n, and ¢
ingr(part(p)) z. As we have z set ¥, there exist by (S1) p,q € U such that
p #un, pingr(part(p)) t, p ingr(part(u)) q , q ingr(part(p)) 2 and q € ¥.
By our assumption, we have q ingr(part(u)) w. Hence p ingr(part(p)) w and
it follows from (A4) that z ingr(part(u)) w, a contradiction.

It follows that we are left with
Subcase 1b.

There exists v € U such that v #, n, v ingr(part(p)) z, v € ¥ and p(v,w) <
M. But this means that w does not satisfy (S2) with ¥,

Case 2. w does not satisfy (S1). Then clearly, it is not true that w set ¥ i.e.
w does not satisfy (S1) with ¥.

It follows from Cases 1 and 2 that u class ¥. This concludes the proof of (ii)
and the proof of the proposition.

O

We now outline the boolean structure induced in the model M. by the rough
inclusion y. We first define, extending the idea of [16], the relation ext (u); to
this end, we let for v, w € U :

u ext (p) w iff it is not true that there exists z € U such that z #, n, z
ingr(part(p)) u, and z ingr(part(p)) w. Following the idea of Tarski [43], we
define boolean operations VM, AM M by letting for u,w € U: u VM w is
the class of objects in ¥(u,w) where ¥(u, w) is the collection of objects which
contains an object ¢ iff either ¢ ingr(part(u)) v or t ingr(part(u)) w; uAMw is
the class of objects in @(u, w) where @(u,w) is the collection of objects which
contains an object ¢ iff ¢ ingr(part(p)) v and ¢ ingr(part(p)) w; finally, ~Mu
is the class of objects in Z(u) where =(u) is the collection of objects which
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contains an object ¢ iff ¢ ext (u) u.

We have the following proposition; the straightforward proof much in the spirit
of the proof of Proposition 4 in Section 5 is omitted.

Proposition 11 The operations VM, AM. =M introduce into the set U the
structure of a Boolean algebra viz. the following properties hold

(i) w congr(y1) (=M= u);
(ii) (u VMw) congr(p) (w VM w);
(iii) ((u VMw) VM2) congr(p) (u VM (w VM 2));
(iv) (u VM w) congr(u) u;
(v) (u VM n) congr(u) u;
(vi) (u VM (=Mu)) congr(u) U;
(vii) (u AMw) congr(p) (w AMu);
(viii) (u AM (w AM2)) congr(p) ((u AMw) AM2);
(iz) (u AM w) congr(u) u;
() (u A (=Mu)) congr(p) n;
(zi) (u AMU) congr(u) u;
(i) =M (u VMw) congr () ((=Mu) AM (=M w));
(i) =M(w AMw) congr(u) ((=Mu) VM (=Mw));
(ziv) (u AM (v VM w)) congr(p) ((u AMv) VM (u AMw));
(r0) (u VM (o AM ) congr() ((u VM) AM (u VM w));
(xvi) (u AM (u VMw)) congr(p) u;
(zvii) (u VM (u AMw)) congr(p) u.
O

We now observe that the rough inclusion y behaves with respect to the boolean
operations VM and AM in the same way as the rough membership function
behaves to the set-theoretic operations of the union and the intersection; the
following proposition is therefore a far-reaching generalization of prop 2 (vi),
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(vii) in Section 2 and it demonstrates that the operators max and min are the
limiting operators in , respectively, the additive and the multiplicative cases,
in the widest sense.

Proposition 12 (i) pu(u,v VMw) > max {u(u,w), u(v,w)};

(ii) p(u AMot) < min {u(u,t), p(v,t)}.

(u AMw) ingr

Proof It suffices to observe that (u AMw) ingr(part(u)) u ,
(u VMw) and to

)
(part(p)) w , uw ingr(part(u)) (v VMw) and w ingr(part(u)
apply (A2).

9.2 Rough inclusion in the context of many-valued logic

In this section we will reveal some of the basic connections between rough
mereology and many-valued logic [11], announced above. We recall that a
t-norm T is a mapping T : [0,1] x [0,1] — [0, 1] which satisfies the con-
ditions T(r,1) =r , T(r,s) = T(s,r) , if r < s then T(r,t) < T(s,t) and

%
T(r, T(s,t))=T(T(r,s),t). A residual implication T induced by a t-norm T
%
is a mapping T :[0,1] x [0,1] — [0, 1] which satisfies the condition

T(r,s) <tiff r < ?(s,t).

Clearly, when a t-norm T is a continuous mapping then we have a unique
residual implication

?(s,t) = sup{r: T(r,s) <1).

We consider a model M. of L,,,. As the induced model of mereology has the
property that the notions of a set and of a subset are equivalent, we can inter-
pret the value p(u,w) as the value of a fuzzy membership function p,(u) in
the sense of fuzzy set theory [46]. The partial containment is expressed in this
theory [11] by means of a many-valued implication viz. for a given many-valued
implication [ : [0,1]x[0,1] — [0, 1], the induced partial containment function
or(u,w) is defined by the formula: o7(u,w) = inf{/(p.(2), pu(z)) : 2 € U}.

We show that when the implication [ is a residual implication T induced
by a continuous t-norm T then the resulting function o1 is a rough inclusion
and, moreover, the function ot preserves the relation ingr(part(u)) hence it
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induces the identity isomorphism of the corresponding boolean algebras. Our
next proposition reads as follows.

Proposition 13 For a conlinuous t-norm T and a model M. of L,,, with
the strict rough inclusion p, the function

. P o
(i) () = inf{ T (), 1 (2)) s 2 € U}
is a rough inclusion; moreover, we have

(ii) or(u,w) =1 tff p(u,w) = 1.

Proof We first observe that or(u,u) = inf{?(,uu(z),,uu(z)) 2z e U}y =
inf{l : z € U} = 1. Next, we assume that or(u,w) = 1; it follows that

?(,uu(z),,uw(z)) = 1 for any z € U hence we have pu,(z) = T(1,pu.(z))

< pw(z) and thus ?(,uu(t),,uw(t)) > ?(,uv(t),,uu(t)) for all v,¢ which by
taking the infimum over all ¢ yields or(v,w) > or(v,u). We now assume

that or(u,w) = 1 = or(w,u). Hence we have ?(,uu(t),,uw(t)) = 1 and

?(,uw(t),,uu(t)) =1 for any ¢t € U. It follows that g, (t) > T(1, pu(t)) = pu(t)
and, similarly, ., (t) > p,(t) for any ¢ € U. We have therefore p,(t) = (1)
for any t € U. For a given v € U, we therefore obtain

UTEu,v)) = T (1), (0);t € UY = inf{T (u(t) 1)) : ¢t € U} =

We now consider or(n,u) for u € U; we have

%
oy 0) = {7 (n (=), ) = € U} = 1
(either z is the null-object and then ?(,un(z),,uu(z)) = ?(1, I)=1lorz#,n

and ?(,un(z),,uu(z)) = ?(O,yu(z)) =1 ). We have proved that (U,o7) is a
model for (A1)-(A4).

We now digress from the proof that o1 is a rough inclusion and we prove that

(ii) holds. We first assume that or(u,w) = 1. Then we have ?(,uu(z),,uw(z))
for any z € U hence T (py(u), tw(u)) = 1 and this implies that 1< j,,(u)
ie. p(u,w) = 1. We now assume that p(u,w) = 1; it follows by (A2) that

p(v,w) > p(v,u) for any v € U hence ?(,uu(v),,uw(v)) =1 for any v € U and
it follows that or(u,w) = 1.
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It follows that if we have a condition employing the formula or(u,w) = 1
and we replace in this condition the formula or(u,w) = 1 by the formula
p(u,w) =1 then we obtain the equivalent condition. From this remark it infer
immediately that ot satisfies (A5) and (A6). This concludes the proof.

d

We denote by M+ the model of L,,, obtained from a model M. with a strict
rough inclusion p by replacing ¢ with or. By the symbol

Stand_Mod(T)

we denote the class of models of the form M+ where M is a standard model

of Lyp.

We now prove the consistency of the deduction rule of the form (Dy); the sym-
bol CON((A1)-(A6)4(Dy)) denotes the consistency of (Dy) i.e. the existence
of the model of L,,, in which (Dy) is valid under a plausible interpretation of
the function symbol f. We extend the syntax of the L,,, by adding a functional
constant symbol f of type

(lattice_element, lattice_element, lattice_element).

we extend accordingly the domain of #M. Then we have

Proposition 14 CON((A1)-(A6) +(Dy)); more specifically, the deduction rule
(Dy) is valid in any model M in Stand_Mod(T) where FM(f) = T.

Proof We assume that o1(u,v) =r, or(v,w) = s. We have r = inf{?(,uu(t),

py(t)):t €U} and s = inf{?(,uv(t),,uw(t)) : 1t € U}. Clearly, whenr = 1 = s,
the rule (D7) is the rule (D1). We consider some cases.

1. In the case when r < 1 and s = 1, we have p, (1) < p,,(t) for any ¢ € U and
thus

o (,w) = inf{ T (ra(t), (1)) : 1 € U} >

T (a(l), o) s L€ UY = 7 = T(r, 1).

2. In the case when r = 1 and s < 1 it is enough to consider a fixed ¢t € U

such that r, = ?(,uu(t),luv(t)) =1 and s; = ?(,uu(t),,uw(t)) < 1. We have
palt) < poft) and T(sopm()) = rult) hence T(sepu(8)) < pu(t) which
implies that T (py (1), pw(t)) > s¢ = T(1,8:) =T (r4, 8¢); passing to infima over
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t on both sides gives or(u,w) > inf{T(ry,s;) : t € U} > T(inf{r; : t €
Ut inf{s; : t € U}} = T(r,s).

3. It remains to consider the case when r,s < 1. We proceed as in the case
2 1.e. we take a fixed { € U and we consider r; and s; defined above. We

show that we always have the inequality ?(,uu(t),,uw(t)) > T(rys:) from
which the inequality or(u,w) > T(r,s) follows by passing to infima on both
sides. The case r;, = lands; < 1 has already been considered in case 2
and the case r; = 1 = s; follows obviously. In the case r; < 1,8, = 1 we
proceed in the same way as in the case 1. It remains to consider the case
re < 1,8 < 1. We have T (rs, gy (1)) = po(t) and T (4, po(t)) = po(t). 1t fol-
lows that T (ss, T(re, pu(t))) = p(t) ice. T(T(re, 8¢), (1)) = g (t). Tt follows

that ?(,uu(t),,uw(t)) > T(r, s¢) and by taking the infimum over all ¢ we ob-
tain the inequality or(u,w) > inf{T(ry,s;) : t € U} > T(inf{r; : t € U},
inf{s; : t € U}) = T(r,s).

This concludes the proof.

6 An Application: A Rough Mereology Based Distributed System
For Synthesis of Approximative Solutions

We present a general scheme for synthesis of approximate solutions to a given
requirement. We begin with introductory remarks which provide a motivation
and explain our methodological assumptions.

6.1 Methodology

We begin with an example of a synthesis of a solution in a classical context.
Consider a formula a: p — p in the propositional calculus [19]. To give
a formal proof of a requires a derivation of a from a system of axioms of
the propositional calculus by means of allowed inference rules. An exemplary
derivation of « is the following one represented in a sequence of steps.

Step 1. The instances (I1), (12), (I3) of axiom schemata are taken:
(1) p — (p — p);

(12) (p—((p—p) —p) —((p—(p—p) —(—Dp)
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(I3) p — ((p — p) — p).

Step 2. From (I2) and (I3) by applying the modus ponens (MP) inference
rule the formula

(M) (p—(p —>p)) — (p —> p)
is obtained.

Step 3. From the formulas (M) and (I1) the formula (R) is obtained by
applying the (MP) inference rule

(R) p — p

The formula (R) is @ and the derivation is concluded. The above derivation
of the formula « can be regarded as a scheme for synthesis of a solution (a
derivation) to the requirement «. In this scheme we can distinguish some
specialized agents: R, M, I1, 12, 13. The agents perform specialized tasks
and are involved in communication and negotiation processes which can be
described in a sequence of stages.

Stage 1. The agent R (the root agent of the scheme) receives the formula o
and decomposes it into some formulas 3, v (possibly non-uniquely) from which
it can produce a by means of its operation (MP).

Stage 2. The agent R and agents M, [1 negotiate the particular decomposition
of a; in our example, the decomposition is chosen into (M) and (I1).

Stage 3. The agent I is an inventory (leaf) agent : it is able to find a required
formula in the inventory of instances of axiom schemata. The agent M can
repeat the stage 1 with the formula (M) by negotiating with agents 12 and 13
the decomposition of (M) into formulas §, ¢ from which M is able to produce
(M) by means of its inference rule (MP). In our example, this decomposition

is (12), (13).

Stage 4. The agents [1, 12, I3 send the required negotiated formulas from
the inventory to their parents. The agent M synthesizes the formula (M) and
sends it to the parent R. The agent R produces the formula (R) and sends
it as the solution satisfying the requirement along with the assertion of its
correctness.

We would like to adopt the above scheme as a general scheme for reasoning
under uncertainty. In the process of generalizing the above scheme to a scheme
for reasoning under uncertainty we have to take into account the following
remarks.

Remark 6.1. The knowledge of an agent in a scheme for reasoning under
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uncertainty is subjective and incomplete. In particular, an agent may not be
able to distinguish among certain requirements(specifications, formulas etc.).

Remark 6.2. The local decomposition knowledge of an agent may also be
uncertain and this knowledge may not be understood fully by other agents as
the agents possess incomplete fragments of the knowledge about the world.

Remark 6.3. The leaf agents having an access to the inventory of elemen-
tary objects may be able to select objects which satisfy the requirements not
cartainly but in an acceptable degree only.

Remark 6.4. Agents may be able to classify objects approximately only, in
terms of their closeness to certain model objects (standards, logical values
etc.).

Remark 6.5. The general form of an inference rule under uncertainty of an
agent ag whose children are agy, ags, .., agy is of the form

(D) if (21, (P1,€1)) A (22, (P2, €2)) Ao A (2g, (P, €x)) then

(o(x1, 22, .., 2), (P, €))

where x1,x3,...,x; are objects submitted by, respectively, ag;, ags,...,agy and
(@1, €1),...,(Pp, €k) are approximate specifications (formulas) at agents ag; ,...,
agi, o(x1,...,xx) is the object produced by ag from z1,...,zx by means of an
operation o and (&, ¢) is the approximate specification at ag. The intended
meaning of (D) is: if the agent ag; can submit an object z; satisfying the
approximate specification (91,¢;) and ... and the agent agy can submit an
object z; satisfying the approximate specification (@, ¢;) then ag can apply
the operation o to assembly the object # = o(x1,...,x;) which satisfies the
approximate specification (@, ¢).

Remark 6.6. Problem specifications are issued by the external agent cag (the
customer agent) in a language understandable to some agents in the scheme
(in particular, to the root agent R). The specific form of the language depends
on the particular synthesis process.

The object x synthesized by the scheme as an approximate solution to a re-
quirement is evaluated by the agent cag with respect to its local knowledge.
The process of learning the correct synthesis of solutions to a given specifica-
tion is concluded when the two evaluations are consistent.

We would like to adopt rough mereology as a foundational basis for a general
scheme for reasoning under uncertainty. We will therefore accept the following
assumptions.
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Assumption 1. Universes of objects (universes of discourse) of agents are
models of L,,, in which certain collections of objects, called standard objects,
are distinguished. The rough inclusions of the universes induce rough mere-
ological distance functions in their respective domains by means of which
objects are perceived and characterized with respect to the standards in the
respective universe.

Assumption 2. The semantics of the approximate logic of formulas of the
form (@, €) of any agent ag is defined in terms of standards of ag and the rough
mereological distance function in the universe of objects of the agent ag.

Assumption 3. Local uncertainty measures (uncertainty coefficients €) are
propagated from the children of an agent ag to the agent ag by means of func-
tions extracted from intensional dependencies discovered from the knowledge
(information systems) of agents.

Our approach can be precisely described as 7an analytical approximate rea-
soning” in the sense that all necessary ingredients for the reasoning scheme
are extracted or inferred from the empirical knowledge represented by the
information systems of the agents.

6.2 The agent structure

We will discuss here the structure of a single agent ag in a scheme S of agents.

We begin with a theoretical result which will simplify our treatment of the
reasoning scheme. By a quasi-rough inclusion p, in a set U we will understand
a function

po: U x U —[0,1]
which satisfies the following conditions

(i) prof, @) = 15

(ii) if po(z,y) = 1 then py(z,y) > po(z, z) for any z € U,

(iii) po(z,y) = poly, ).

We recall that a t-conorm L [11]is a function L : [0,1]x[0, 1] — [0, 1] such that
1 is increasing coordinate-wise, commutative, associative and L(r,0) = r. We
extend the operators T, L over the empty set of arguments and over singletons
by adopting the following convention : T(0) =1, L(0) =1,T(r) =r = L(r).
We observe that by the associativity and commutativity of T and L, the
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values T (zq,...,zx) and L(x1,...,2) are defined uniquely for any finite set of
arguments. We have the following proposition, whose straightforward proof is
omitted.

Proposition 15 A quasi-rough inclusion u, on a set U can be extended lo a
rough inclusion on the power set exp(U); in particular, an extension of u, is

defined by the following formula where X,Y C U
p(X,Y) = T{L{p,(z,y) :y €Y} 2 € X}
O

A pair (U, p,) where U is a set and p, is a quasi - rough inclusion on U is
called a quasi - model of L,,,.

We consider an agent ag in the scheme. We will call the label of the agent ag
the tuple

lab(ag) = (A(ag), M(ag), L(ag), Link(ag), O(ag), St(ag),
Unc_rel(ag), H(ag), Uncrule(ag), Dec_rule(ag))
where
1. A(ag) = (U(ag), A(ag)) is an information system of the agentag;

2. M(ag) = (U(ag),[0,1], F(ag)) is a quasi-model of L,,, with a quasi-rough

inclusion F(ag)(p) = po(ag) in the universe U(ag).

3. L(ag) is a set of unary predicates in a predicate calculus interpreted in the
setU(ag);

4. St(ag) = {st(ag),...,st(ag),} C U(ag) is the set of standard objects at ag;

5. Link(ag) is a collection of strings of the form agiag,...agrag; the intended
meaning of a string agiags...agrag is that agy,age, .., agy are children of ag
in the sense that ag can assemble complex objects (constructs) from simpler
objects sent by agy, ags, ..., agr. In general we can assume that for some agents
ag we may have more than one element in Link(ag) which represents the
possibility of re-negotiating the synthesis scheme.

6. O(ag) is the set of operations at ag; any o € O(ag) is a mapping from the
cartesian product U(agy) x U(ags) X ... x U(agy) into the universe U(ag) where
agi1ags...agy € Link(ag);

7. Unc_rel(ag) is the set of uncertainty relations unc_rel; of type
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(0i5 pisagr, aga, ..., AGk, ag, po(agr), .oy fro(agr), fo(ag))

where agyags...agrag € Link(ag) and p; is such that

pi((z1,€1), (w2, €), ., (Tk, €1), (2, €))

holds for zy € U(agy), 2 € Ulags),..,zr € Ulagr) and &1, 9, .., e € [0, 1] iff
po(xj,stlag;); = ¢; for 3 = 1,2, . k and p,(z, st(ag);) = € for the collection of
standards st(ag1 ), st(aga)i, .. ., st(agr):, st(ag); such that

oi(st(ag):, st(agz)i, .., st(age);) = st(ag);.

Uncertainty relations express the agents knowledge about relationships among
uncertainty coefficients of any agent ag and uncertainty coefficients of its chil-
dren. The relational character of these dependencies expresses their intension-
ality.

8. Unc_rule(ag) is the set of uncertainty rules unc_rule; of type

(017 fja Mo(a91)7 :LLO(GQQ)v x MO(agk)a ,LLO(CLg))

of the agent ag where agiagy...agrag € Link(ag) and f; : [0,1]* — [0,1] is
a function which has the property that there exists a collection of standards
St(agl)v St((ng), Ty St(agk)a St(ag) and

if objects 1 € U(agr),xq € U(agz),..,xx € Ulagy)
satisfy the conditions o (zs, st(agi)) > e(agi) for i = 1,2, .., k
and f1,(0j(z1, 22, ..., vx), st(ag)) > e(ag)
then f;(c(ag),c(age), ..,e(age)) > (ag).

Uncertainty rules provide functional operators for propagating unceratinty
measure values from the children of an agent to the agent; their application is
in negotiation processes where they inform agents about plausible uncertainty
bounds.

9. H(ag) is a strategy which produces uncertainty rules from uncertainty re-
lations; to this end, various rigorous formulas as well as various heuristics can
be applied.

10. Dec-rule(ag) is a set of decomposition rules dec_rule; of type
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(01, @(ag1), P(ags), .., P(agy), P(ag))

where @(ag1) € L(ag1), ®(ags) € L(agz),...®(agr) € Lage), ®(ag) € L(ag)
and agiags...agrag € Link(ag) such that there exists a collection of standards
st(agr), st(aga),. ., st(agr), st(ag) with the properties that

0j(st(agy), st(ags), .., st(agr)) = st(ag),
st(ag;) satisfies @(ag;) for « = 1,2,..,k and st(ag) satisfies @(ag).

Decomposition rules are decomposition schemes in the sense they describe the
standard st(ag) and the standards st(agy), ..., st(agx) from which the standard
st(ag) is assembled under o;.

6.3 The approximate logic of an agent

We will comment briefly on the semantics of approximate formulas of the form
(@, ¢); our discussion is a very concise extract from [15] where the approximate
logic Lyppror of a system of agents is discussed formally. Consider a predicate
@ € L(ag) and € € [0,1]. The approximate formula (@,e) has the intended
meaning of a formula @ satisfied in a degree ¢; formally, we will say that
a construct (object) # € U(ag) satisfies the approximate formula (®,¢) iff
there exists a standard st(ag) such that st(ag) satisfies the formula @ and
polag)(z, st(ag)) > e. In particular, for a decomposition rule dec_rule; as in
(10) above x satisfies (@(ag), e) whenever pu,(ag)(x, st(ag)) > e; clearly, st(ag)
satisfies the approximate formula (®(ag),1).

6.4 The approximale reasoning by a system of agents

We now consider a system S of agents over an inventory I/ NV. We assume that
the relation <, defined by ag’ < ag iff agiags...agrag € Link(ag) and there
exists 7 < k such that ag’ = ag;, orders S into a tree; we assume that any
agent ag in S has exactly n standards which satisfy the composition rule in
the sense that if agyags...agrag € Link(ag) and agiagy...ag; ag; € Link(ag;)
for s = 1,2, ..,k then for any 7 = 1,2,..,n the composition

oj(ag) o (0j(agr), .., 0j(agr))
produces from standards st(agy);,-..., St(agﬁk)j the standard st(ag);. We de-

note by the symbol Root(.S) the root agent of the scheme S and the symbol
Leaf(S) will denote the set of leaf (inventory) agents of S. We now present the
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procedure of approximate solution synthesis by the scheme S. The procedure
involves two stages of communication/negotiation process: the top-down com-
munication /negotiations process and the bottom-up communication process.
We begin with the top-down stage described in the following steps.

Step 1. A requirement @ in L(Root(S)) is issued by the agent cag to the
agent scheme.

Step 2. The root agent selects a standard st( Root(S)); such that st(Root(S));
satifies @ (if this is not possible then the procedure halts).

Step 3. The agent Root(S) selects an uncertainty coefficient ¢( Root(.S)); the
meaning of this choice is that if an object z satisfies the approximate formula
(@°(Root(S)), e(Root(S))) then the object x satisfies the requirement @.

Step 4. The agent Root(S)) communicates with its children

agr,ags, ..., agr

and negotiates with them the choice of uncertainty coefficients €(ag;), j =
1,2, ..., k, such that

file(agy), €(aga), ..., €(agr)) > €(Root(S))
where f; is the uncertainty function in the uncertainty rule unc_rule; of Root(S)).

Step 5. The negotiation procedures are repeated by agents ag,ags,... and
their children until leaf agents are reached. The result of the successful nego-
tiation process is the set {¢(ag)} of uncertainty coefficients at all agents ag;
at any agent ag the counterpart of the condition in Step 4 holds.This defines
the set of specifications for all agents.

Step 6. Any leaf agent ag realizes its specification (®'(ag), ¢(ag)) by choosing
an object z € INV N U(ag) which satisfies (#*(ag), ¢(ag)).

The bottom - up communication process consists in the sequence of steps of
the following form.

Step 7. Any agent ag # Root(S) sends to its parent the object x assembled
from objects sent by its children and satisfying their specifications . The agent
ag calculates and communicates to its parent the vector [u,(x,st(ag); : j =
1,2, ..,n] of distances of the object = from its standards. The leaf agents send
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the objects chosen in the inventory also with the vector of distances from
standards.

Step 8. The agent Root(S) assembles the final object x4, calculates the vector
of distances from its standards and checks that the object x4 satisfies the
specification (®‘(Root(S)), e( Root(S))). In the positive case the object zg is
issued to the agentcag.

We also would like to underline the control mechanism incorporated into the
above procedure.

Remark 6.7. Let us observe that the condition imposed on the uncertainty
function f; does not guarantee that when the children agy, ags, ..., ag. of ag
select objects x1, q,...,x) such that

to(ag;)(zx;, st(ag;):) > e(ag;)

then we have p,(ag)(oi(x1,..,2), st(ag);) > €(ag) ; such demand would be
unrealistic. It may happen therefore that the agent ag will find that it cannot
assenmble an object which would satisfy its specification. In this case it is
able to interrupt the synthesis process and to demand better quality parts
(e.g. greater uncertainty coefficients ¢(ag;)) or a renewal of the negotiation
process etc. Our scheme acts therefore as a controller.

We will comment briefly on the negotiation tasks in the scheme S.

Remark 6.8. We would like to observe that the agents in S can communicate
by means of mereological decomposition schemes indued by their quasi-rough
inclusions; the communication process is based on the observation that for
any agiags..agrag € Link(ag), the agent ag construct its complex objects as
classes in the sense of mereology of Lesniewski of simpler objects and these
simpler objects in turn are complex objects (classes in mereological sense) in
the universes of children.

The reader will find in [24] an example of a negotiation process based on
boolean reasoning [3], [44] and in [25], [28] an idea of a rough mereological
controller.

7 Conclusions

We have presented a conceptual scheme for approximate reasoning about com-
plex systems in the processes of synthesis of complex systems from simpler

32



parts. Our analysis is applicable as well to problems of design, analysis and
control in complex systems [31], [40]. Our approach is based on rough mere-
ology and rough inclusions determine local decomposition schemes of agents
by means of which agents establish the mereological hierarchies of objects.
The relationships among agents resulting from the inferred local decomposi-
tion schemes are encoded in strings in Link and they are used in determining
a scheme formation for synthesis of an approximate solution to a given re-
quirement. All relations and functions which determine the mechanisms for
propagation of uncertainty as well as mechanisms of negotiatons are inferred
from knowledge of agents represented in their information systems. The adap-
tiveness of our scheme is achieved by means of of an adjustment of rough
inclusions chosen by agents, modifications of uncertainty relations and uncer-
tainty functions due to the appearance of new yet unseen objects (constructs),
improvements in the performance of agents due to the learning processes, and
possibilities for redesigning the scheme due to new mereological hierarchies
that result from other changes to the scheme and its environment. The limita-
tions of this scheme are due to the complexity of learning tasks leading to the
choice of rough inclusions, uncertainty relations and rules, and to the scheme
formation.
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