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1. Introduction  
The term ‘ontology’ has recently acquired a certain currency within the knowledge engineering 
community, especially in relation to the ARPA knowledge-sharing initiative (see Gruber (to 
appear), Mars (ed.) 1994, Guarino 1994, Guarino, Carrara and Giaretta 1994, 1994a). The term is 
used in a number of different senses, however, not all of them clear or mutually compatible. Here 
I follow philosophical tradition in conceiving ontology as the science which deals with the nature 
and the organisation of reality. Ontology thus conceived may be formal, in the sense that it is 
directed towards formal structures and relations in reality. This formal ontology is contrasted 
with the various material ontologies (of physics, chemistry, medicine, and so on) which study the 
nature and organisation of specific sub-regions of reality. Formal structures, for example the 
structures governing the relation of part to whole, are shared in common by all material domains. 
Both formal and material ontologies may be pursued with the aid of the machinery of axiomatic 
theories, and it is axiomatic formal ontology that has proved to be of most interest for the 
ontology-building purposes of the knowledge engineer.  

The term ‘formal ontology’ was introduced by Edmund Husserl in his Logical Investigations 
(1970, 1st German edition 1900/01), and the mereology or formal theory of part and whole there 
developed by Husserl is still, of all the component disciplines of formal ontology, that which has 
received the most developed axiomatic treatment. Mereotopology, the subject of the present 
essay, is built up out of mereology together with a topological component, thereby allowing the 
formulation of ontological laws pertaining to the boundaries and interiors of wholes, to relations 
of contact and connectedness, to the concepts of surface, point, neighbourhood, and so on.  

Our understanding of mereotopological principles rests on philosophical and logical studies both 
classical – here Aristotle, Brentano and Whitehead deserve special mention (see also Menger 



1940 and Tarski 1956) – and modern (Adams 1973ff, Smith 1982ff., Chisholm 1984, Simons 
1987, Stroll 1988, Bochman 1990, Eschenbach 1994, Varzi 1994, Fine 1995, Eschenbach and 
Heydrich (to appear)). Too much of the artificial intelligence literature in the areas of formal 
ontology and naive physics has however not drawn from these sources, but has rather been 
dominated by the use of set-theoretical instruments not conducive to the direct representation of 
mereological and topological structures. The work of Cohn and his associates (Randell, Cui and 
Cohn 1992, Gotts 1994f, Cohn and Gotts 1994; see also Aurnague and Vieu 1993) is an 
exception to this rule, and has done much to demonstrate the fruitfulness of the mereotopological 
alternative for knowledge-engineering purposes. This work is however based on the Whitehead-
inspired system of Clarke (1981, 1985) which is problematic for at least the following reasons:  

1. The system has a single primitive, that of connection, in terms of which the notion of part is 
defined by means of what, intuitively, appears to be a logical trick. This means that the 
mereological and topological components of the resultant theories are difficult or impossible to 
separate formally. The power of the approach is thus reduced, since experiments in axiom-
adjustment at different points in the theory cannot be carried out in controlled fashion. Moreover, 
there are associated formal difficulties with the system (discussed by Varzi in his paper in this 
volume) which contradict the goal of formal ontology as a realistic, descriptive enterprise.  

2. The system rests on a no longer fashionable conception of formal ontology (embraced by 
Lesniewski and his followers, by Carnap, Goodman, and others) according to which the goal of 
minimizing the number of non-logical primitives (ideally to the point where a system would have 
precisely one such primitive) is taken to override other goals, such as intuitive plausibility of 
definitions, easy testability of axioms, and so on. More recent experience in the construction of 
formal-ontological systems, for example for the purposes of naive physics (Hayes 1985), has 
suggested that systems capable of describing real-world phenomena will require large numbers 
of non-logical primitives, no group of which will be capable of being eliminated formally in 
favour of any other group.  

The axiomatic version of mereotopology here presented is designed to serve as the starting point 
of a formal-ontological system which will be free of these defects. It rests on the two non-logical 
primitives of part (P) and interior part (IP) respectively. Connection (C) is then defined in terms 
of P and IP. Other versions of this basic theory have been proposed (Smith (forthcoming), Varzi 
1993f., Casati and Varzi 1994 (Appendix)), and a survey of the whole field is presented in 
Eschenbach et al. (eds.) 1994, and in Zelaniec (ed.) 1995.  

2. Constituency  
Classical first order logic with identity and descriptions will be assumed without ceremony. In a 
complete account we should have to employ the resources of a free logic, perhaps along the lines 
of Simons 1991, to take account of the fact that the term-forming operator ‘σ‘ introduced below 
is not defined for every predicate. Variables x, y, z, etc. will range over entities (particulars, 
individuals) in general. Here the term ‘entity’ is to be understood as ranging over realia of all 
sorts. Our quantifiers are otherwise unrestricted, embracing inter alia my left foot and the 
interstellar vacuum, my present headache and the three-dimensionally extended colour of this 
green glass cube. They embrace what is continuous or discontinuous, bounded or unbounded, 



connected or non-connected; and they embrace also volumes of space and intervals of time, as 
well as three-dimensional material things and their parts and moments.  

We adopt as mereological primitive the relation of parthood or constituency. We say x is a part 
of y, and write ‘x P y’, when x is any sort of part of y, including an improper part (so x P y will be 
consistent with x’s being identical to y). Three further purely mereological notions can be 
defined immediately:  

DP1  x overlaps y:  xOy: = ∃z(zPx ∧ zPy) 
 
DP2  x is discrete from y: xDy: = ¬xOy 
 
DP3  x is a point:  Pt(x): = ∀ y(yPx → y  = x) 

As axioms governing P we shall assume the universal closures of:  

AP1  xPy ≡ ∀z(zOx → zOy) 
 
AP2  xPy ∧ yPx. → x = y 

(Generally speaking we suppress all initial universal quantifiers in our statements of axioms and 
theorems.) From AP1 and AP2 and the usual axioms of identity it follows that our system of 
mereology is extensional (Simons 1987, ch. 1), and in particular that x=y≡∀z(zPx≡zPy). From 
AP1 it follows also that:  

TP1  xPx   P is reflexive  
 
TP2  xPy∧yPz. → xPz P is transitive  

We say that a condition ‘ϕ‘ in a single free variable ‘x’ is satisfied iff the sentence ‘ϕx’ is true 
for at least one value of ‘x’. Intuitively we are to suppose that each satisfied condition ‘ϕ‘ picks 
out a certain unique entity, the sum (fusion or join) of all those entities in the world which ϕ, an 
entity which we shall represent by ‘σx(ϕx)’. Note that the sum of ϕers is to be distinguished from 
the extension of the concept ϕ: not everything that is in the sum of ϕers need itself be such as to 
ϕ(thus my leg is in the sum of Britons, but it is not itself a Briton).  

The sum of ϕers can be defined as that entity y which is such that, given any entity w, w overlaps 
with y if and only if w overlaps with something that ϕs. That is:  

DP4  σx(ϕx): = ιy(∀w(wOy ≡ ∃v(ϕv ∧ wOv)))  

We can then prove  

TP3  y = σx(ϕx) → ∀x(ϕx → xPy) 



Empty sums do not exist (they are not a part of reality). Thus if ϕ is a non-satisfied condition, 
then ‘σx(ϕx)’ is undefined. The uniqueness of sums, where they are defined, is guaranteed by 
AP1. We stipulate further that:  

AP3  ∃xϕx → ∃y∀w(wOy ≡ ∃v(ϕv ∧ wOv)) 

which guarantees the existence of sums for satisfied conditions.  

From the usual axioms for identity we have ∃x(x = x), from which we can prove a theorem to the 
effect that the universe exists:  

TP4  ∃x∀y(yPx) 

Further:  

TP5  yPσx(ϕx) ≡ ∀w(wPy → ∃v(ϕv ∧ wOv) 

y is a part of the sum of ϕers if and only if all parts of y overlap with some ϕer.  

We have already noted that not all parts of the whole σx(ϕx) need be such as to ϕ. When 
yPσx(ϕx) iff ϕy, then we say that ϕ is a distributive condition, and we can prove that ϕ(σx(ϕx)). 
Examples of distributive conditions are (for some fixed entity t): is a part of t, is a boundary of t, 
and is an interior part of t.  

We can prove further a theorem to the effect that we can form arbitrary finite unions in the 
following sense:  

TP6  ∃z∀w(zOw ≡ zOx ∨ zOy) 

We define:  

1: = σx(x = x)   universe 
x ∪ y: = σz(zPx ∨ zPy) union 
x ∩ y: = σz(zPx ∧ zPy) intersection 
x´: = σz(zDx)   complement 
x-y: = σz(zPx ∧ xDy)  difference 

 
Note that all set-theoretical associations of these terms are to be resolutely suppressed. Note, 
also, that intersections, complements and differences are not always defined. We can however 
prove the following remainder principle:  

TP7  xPy ∧ x ≠ y → ∃z(z = y-x) 

3. Interior Parts  



As topological primitive we select the relation is an interior part of, which can be elucidated, 
roughly, as follows. Some entities are what we might call tangential to, i.e. such as to touch or 
cross the exterior boundaries of, other entities. Some entities are themselves boundaries of other 
entities, though we note that the boundary of an entity may be outside the entity it bounds (as for 
example in the case of an open interval in the real line). When x is a part of y that is off – which 
is to say: shares no parts in common with – the boundary of y, i.e. is neither tangential nor itself a 
boundary, we say that x is an interior part of y and write ‘x IP y’. We then stipulate:  

AIP1   xIPy → xPy     IP is a special sort of P  
AIP2a   xIPy ∧ yPz → xIPz    left monotonicity  
AIP2b  xPy ∧ yIPz → xIPz    right monotonicity  
AIP3   xIPy ∧ xIPz → xIP(y ∩ z)   condition on finite intersections  
AIP4   ∃x(ϕx) ∧ ∀x(ϕx → xIPy) → σx(ϕx)IPy  condition on arbitrary unions  
AIP5   ∃y(xIPy) 
AIP6   xIPy →  xIPσt(tIPy) 

All of which follow from the usual axioms for a topological space. AIP5 is very strong, and 
allows us to infer an initially counterintuitive-seeming theorem to the effect that the universe is 
an interior part of itself:  

TIP1   1IP1  

The universe is, as we might also say, ‘unbounded’. Indeed we can prove that:  

TIP2   ∀x(xIP1)  

Every entity is an interior part of the universe. From AIP4 it follows that IP determines a 
distributive condition, i.e. that:  

TIP3   tPσx(xIPy) ≡ tIPy 

Hence also we have:  

tPσx(xIPy) ≡ tIPσx(xIPy) 

and:  

TIP4   σx(xIPy)IPy  

4. Boundaries  
As a first step towards defining what it is for x to be a boundary of y, we define ‘x X y’ (x crosses 
y) by:  

DP5   xXy: = ¬xPy ∧ ¬xDy 



or, equivalently, for y ≠ 1,  

xXy: = xOy ∧ xO(1-y)   

i.e., x overlaps both y and its complement. From this it follows trivially that no entity crosses 
itself and that the universe crosses every entity not identical with the universe itself. We now 
define ‘x St y’ (x straddles y) by:  

DIP1   xSty: = ∀z(xIPz → zXy)  

An entity x straddles an entity y whenever x is such that everything of which it is an interior part 
crosses y. The definitions then yield immediately that xSty → ¬ xIPy, from which we can prove:  

TIP5   xPy → xIPy ∨ xSty 

Every part of y is either an interior part of y or such as to straddle y. This follows from AIP1, 
AIP2a and definitions. As a theorem we also have: ¬xIPx → xStx.  

The entities straddling a given entity can be divided, intuitively, into two classes. On the one 
hand are those which include among their parts a boundary of the straddled entity. On the other 
hand there are those – characteristically non-connected – which include no such boundary. We 
shall refer to the first group as tangents. As an example of a non-tangential entity straddling y, 
consider the sum of two points, both off the boundary of some three-dimensional solid y, one of 
which is interior to y, the other exterior. If we examine case V, where x is not merely such as to 
straddle y but is in fact a boundary of y, then we see that what is characteristic of this case is that 
here x is such that not merely it but also all its parts are such as to straddle the bounded entity. 
Accordingly we can define boundary as follows:  

DIP2   xBy: = ∀z(zPx → zSty)  

We can now define what it is for x to be a tangent of y:  

DIP3   xTy: = ∃z(zPx ∧ zBy) 

i.e a tangent of y is any entity which has as part a boundary of y. From this definition we can 
prove that tangents are straddlers, and also that every boundary of y is a tangent of y and is 
thereby also not an interior part of y. We can prove further, by inspection of the definitions, that:  

TB1   xBy ≡ ∀z(zPx → zTy) 

so that, as required, all parts of boundaries of y are not merely straddlers but in fact tangents of y.  

Closure  

We can prove further:  



TB2   xBy ∧ yBz → xBz  transitivity  

We also have:  

TB3   xPy ∧ yBz → xBz 

TB4   xT(y ∪ z) → xTy ∨ xTz  splitting  

We can prove also the following collection principle for boundaries:  

TB5   ∀x(ϕx → xBy) → σx(ϕx)By 

5. Topology  
These theorems enable us to show that the system so far established defines a topological space 
in the standard sense, by defining the closure cl(x) of x ≠ 1 as the union of x with all its 
boundaries:  

DIP4   cl(x): = x ∪ σy(yBx) 

Closure thus defined satisfies the usual Kuratowski axioms:  

I.   xPcl(x) 
II.   cl(cl(x)) = cl(x)  
III.   cl(x ∪ y) = cl(x) ∪ cl(y)  

An entity is called closed iff it is identical with its closure. cl(x) as defined above can be shown 
to be identical to the standard topological closure defined equivalently as the union of x with its 
accumulation points (see below) or as the intersection of all closed entities containing x. A dense 
entity, standardly, is an entity x for which cl(x) = 1.  

The maximal boundary of x, defined by:  

DIP5   bdy(x): = σy(yBx) 

now corresponds to the standard topological boundary, defined as the intersection of the closure 
of an entity with the closure of its complement. Further our interior, defined by:  

DIP6   int(x): = σy(yIPx) 

corresponds to the standard topological interior, defined as the difference between an entity and 
its boundary.  

An entity is called open iff it is identical with its interior. From this we can prove that an entity is 
open if and only if its complement is closed.  



6. Dependent Existence and Brentano’s Thesis  
The remarks above are non-controversial reformulations of standard topological ideas on a 
mereological basis. Now, however, we wish to go further and capture mathematically certain 
ontological intuitions pertaining to ordinary material objects extended in three-dimensional space 
and enjoying qualities of for example shape and colour. We wish to capture, if one will, the 
mathematical structures characteristic of the mesoscopic world of everyday perception and 
action. Three layers of such intuitions can be distinguished:  

1. the layer corresponding to general topological notions of boundary, interior, etc., which 
has been treated above;  

2. the layer corresponding to the general properties of three-dimensional space as we 
conceive it; this space is ‘real’ in the sense that it is not an abstract construction; thus it 
allows no space-filling curves, no objects of fractional dimension, etc.  

3. the layer corresponding to the special topological properties of material objects and their 
associated qualities.  

What follows is a provisional attempt to formulate some of the principles underlying 3. It is 
provisional not least because the definitive statement of such principles must await a more 
adequate understanding of the general properties of space.  

Intuitively, we wish it to be the case that every entity smaller than the universe has a boundary:  

AB1  y ≠ 1 → ∃x(xBy)  

This does not imply that the only open entity is 1. Rather, it tells us that every open entity 
smaller than the universe is bounded, as it were, on at least one side or in at least one place 
(consider the case of the Western hemisphere of the universe or of the interstellar vacuum). The 
boundary itself need then not necessarily be a part of the entity bounded, and indeed that this 
should be the case in general is ruled out by:  

TIP6  xBy ∧ yIPz → xB(z-y) 

From this and TIP2 it follows in particular that every boundary of y is also a boundary of the 
complement of y. From TIP6 it follows trivially that:  

xBx ∧ xIPy → xB(y-x)  

Imagine x is a point in the interior of a three-dimensional solid y. Then y-x is here the result of 
deleting this point in such a way as to produce an entity which has a non-constituent boundary 
within its interior. The opposition between exterior and interior boundaries will receive more 
detailed attention in what follows.  

From TIP6 and TIP1 it follows no less trivially that  

TIP7  xBx → xB(1–x)  



whence also we can infer that, for any x, σy(xBy) = 1, whence also we can infer that B does not 
define a distributive condition in the first argument.  

We can prove further that an entity x is self-bounding (i.e. that x B x) if and only if it has no 
interior parts:  

TIP8  Bx ≡ ¬∃t(tIPx) 

We can now prove that every boundary which is a part of that which it bounds is also self-
bounding:  

TIP9  By ∧ xPy → xBx  

This does not imply, however, that we are defending a position which stands in conflict with the 
commonsensical intuition to the effect that that which bounds e.g. a surface is the outer form or 
edge of the surface. That the surface is self-bounding is consistent with its having as boundary in 
addition some proper part of itself, including its outer form.  

From AB1 and TIP8 we could then prove that boundaries have no interior parts. From TB5 we 
can prove:  

TIP10  xBz ∧ yBz → (x ∪ y)Bz 

And we have also:  

TIP11  xPy → xBy ∨ xIPy ∨ ∃uv(uBy ∧ uIPy ∧ u ∪ v = x) 

Every part is either a boundary or an interior part or the union of a boundary and an interior part 
(where the disjunctions are of course exclusive).  

7. Variants of Brentano’s Thesis  
We wish now to capture the commonsensical intuition to the effect that boundaries exist only as 
boundaries, i.e. that boundaries are dependent particulars: entities which are such that, as a 
matter of necessity, they do not exist independently of the entities they bound (Brentano 1988, 
Part One; Chisholm 1984; Smith 1992). This thesis – which stands opposed to the set-theoretic 
conception of boundaries as, effectively, sets of points, each one of which can exist though all 
around it be annihilated – has a number of possible interpretations. One general statement of the 
thesis would assert that the existence of any boundary is such as to imply the existence of some 
entity of higher dimension which it bounds. Here, though, we may content ourselves with a 
simpler thesis, one whose formulation does not rest on the tricky notion of dimension, to the 
effect that every boundary is such that we can find an entity which it bounds of which it is a part 
and which is such as to have interior parts. (Note that analogous theses could be formulated with 
respect to other neglected or metaphysically contested categories of entities: for example holes, 



shadows, colours, universal forms, thoughts, minds, etc.) Define first of all the predicate is a 
boundary by means of:  

DIP7  Bd(x): = ∃y(xBy) 

We can then write:  

AB2  Bd(x) → ∃zt(xBz ∧ xPz ∧ tIPz)  First Brentanian Thesis  

From this the theorem to the effect that all boundaries are self-bounding can be inferred 
immediately via TIP9. AB2 is not very strong, however. For it seems that we have:  

xBy → xB(y ∪ t) 

for any arbitrary t that is separate from the closure of y. Thus AB2 is satisfied by choosing t such 
that t IP t and setting z equal to the scattered object x ∪ t.  

A Brentanian thesis of the required strength must impose on z in AB2 at least the additional 
requirement of connectedness. To this end we define, for x ≠ 1 and y ≠ 1:  

DCn1  xSy: = cl(x)Dy ∧ xDcl(y) 

We then say that 1- (x ∪ y) separates x from y. Thus bdy(x) separates int(x) from int(1-x) in the 
given sense. We can then prove:  

TS1  xSy ∧ wPx ∧ uPy → wSu 

Further we know that disjoint entities are separate if either both are open or both are closed.  

Define connected:  

DCn2  Cn(x): = x ≠ 1 ∧ ¬∃yz(ySz ∧ x = y ∪ z)  

We then have a new Brentanian thesis affirming, for connected boundaries, the existence of 
connected wholes which they are the boundaries of:  

AB3  Bd(x) ∧ Cn(x) → ∃zt(xPz ∧ xBz ∧ Cn(z) ∧ tIPz) Second Brentanian Thesis.  

Note that DIP2 yields no guarantee that boundaries are connected in the sense here defined.  

8. Exterior and Interior Boundaries  
Intuitively, boundaries can be divided into exterior and interior (See Brentano 1988, Part One, I; 
Smith 1992). The exterior boundaries of x are, as it were, boundaries which separate x from the 
remainder of the universe. Exterior boundaries in this sense may or may not be parts of the things 



(or other entities) they bound, and they may or may not be on the exterior of the relevant entity in 
the normal understanding of this phrase. Thus they may be the boundaries of holes, including 
internal cavities; see, on the wealth of possibilities in this respect, Casati and Varzi 1994. We can 
distinguish also however interior boundaries – the boundaries which would result, intuitively, if 
interior parts of x were exposed to the light of day by annihilation of what stands between them 
and x’s exterior. Interior boundaries are in this sense potential exterior boundaries; they are those 
parts of x which are boundaries of interior parts of x but not themselves, or not yet, boundaries of 
x. We define:  

DIB1  xIBy: = xIPy ∧ xBx 

We might consider also in this connection the idea of a slicing principle to the effect that, in 
those cases where x B y results from the fact that x is a deleted region inside some z = y-x, we can 
slice z along x to produce one or more entities of which x is both exterior boundary and part.  

Points  

We can prove:  

TPt1  ∀y(yBx ≡ x = y) → Pt(x) 

A point is that which has no parts other than itself (DP3). We can now stipulate that a point has 
no boundaries other than itself (a condition which might also have been used as a definition of 
‘point’):  

APt1  Pt(x) → ∀y(yBx ≡ x = y) 

This is equivalent to the proposition:  

Pt(x) → x = cl(x)  

which is one (mereological) formulation of the usual condition on a T1 topological space. A 
more standard formulation would be:  

¬∀x∀y(x ≠ y ∧ Pt(x) ∧ Pt(y) → ∃z((xIPz ∧ ¬yIPz) ∨ (yIPz ∧ ¬xIPz))) 

From APt1 it follows further that:  

TPt2  Pt(x) ∧ xBy ∧ x ≠ y → ¬Pt(y) 

and, by setting y = 1-x:  

TPt3  Pt(x) → ∃y(x ≠ y ∧ xBy)  

This goes some way towards capturing the anti-set-theoretical intuition to the effect that there 
are, in reality, no isolated points.  



A neighbourhood of a point x is any entity y of which x is an interior part. A punctured 
neighbourhood of x is a neighbourhood with x deleted. An accumulation point may now be 
defined as follows:  

DA1  xAy: = Pt(x) ∧ ∀z(xIPz ∧ x ≠ z → (z-x)Oy) 

i.e., an accumulation point of y is any point x which is such that any punctured neighbourhood of 
x overlaps y. We now prove:  

y is closed → σx(xAy)Py 

From the definitions we can prove  

TPt4  xAy → xBy ∨ xIPy  

By TP11 we can prove generally that: Pt(x) ∧ xPy → xBy ∨ xIPy  

TPt5  xBy ∧ xDy ∧ Pt(x). → xAy 

We may now go on to define interior points and boundary points as follows:  

DPt1  xIPty: = Pt(x) ∧ xIPy 

DPt2  xBPty: = Pt(x) ∧ xBy 

Using axiom AIP3 we can prove further that interior points are accumulation points.  

TPt6  xIPty → xAy  

Exploiting an analogy with Brentano’s notion of the ‘full plerosis of an internal boundary’ 
(Brentano 1988, Part One, I) we may define further:  

DA2  xFAy: = Pt(x) ∧ ∃z(xBz ∧ x ≠ z → ∃t(tIPy ∧ tPz ∧ xAt)) 

x is a full accumulation point for y iff it is an accumulation point to y in all the directions in 
which x can serve as boundary (x is, as it were, the centre of a spherical ball within y).  

TPt7  xFAy → xAy  

9. Things  
Return, once again, to the Second Brentanian Thesis:  

AB3  Bd(x) ∧ Cn(x) → ∃zt(xPz ∧ xBz ∧ Cn(z) ∧ tIPz)  



This is still too weak if we wish to capture the intuition to the effect that exterior boundaries in 
the real material world are boundaries of things. For we require at least a further requirement to 
the effect that the entity z in question is the object bounded and not its complement. By TIP6 
each boundary behaves symmetrically in relation to the object and its complement. From the 
perspective of common sense, however, the boundary (of, say, this stone) is much more 
intrinsically connected to the stone than it is to the rest of the universe. To capture this notion 
formally would require (what we do not yet have) an adequate formal account of things, which 
we can characterize briefly as three-dimensional material entities which are at the same time 
maximally connected. Thus my arm is three-dimensional and material but it is not a thing, and 
similarly the scattered whole consisting of my arm and this pen is three-dimensional and material 
but it, too, is not a thing (Smith 1992). To this end we shall define the notion of a ‘component’ or 
maximally connected entity. For values of x such that Cn(x) we set:  

DCn3  cm(x): = σy(xPy ∧ Cn(y)) 

The component of x is the maximal connected entity containing x. We can then prove:  

TCn1  z = cm(x) → ∀y(Cn(y) ∧ zPy → y = z) 

Components are, if one will, those natural units from out of which the world is built. Such 
natural units can be found not only in the realm of three-dimensional material things, but also 
e.g. in the temporal dimension (salutes, weddings, lives, are natural units in the realm of events 
and processes). To deal with these matters, here, however, as also with the concepts of 
dimension (edge, surface) and with the relations between units and their underlying stuffs, all of 
this would lead us too far afield.  

10. From Cognitive Linguistics to Ontology  
Concepts and theories derived from mereology and topology have been utilized already in a 
variety of ways not only in the field of ontological engineering but also in a range of other 
cognitive science disciplines. Examples of such work include:  

– analyses of natural language, especially of object-categorization, verb-aspect and the mass-
count distinction: Mourelatos 1981, Habel 1990, Descläs 1989, Ojeda 1993, Habel, Pribbenow 
and Simmons 1993, Aurnague and Vieu 1993; Pianesi and Varzi 1994 and (to appear);  

– work in the theory of geographic information systems: Mark and Frank 1991, Herring 1991, 
Frank and Campari (eds.), 1993, Frank, Campari and Formentini (eds.), 1992;  

– investigations of spatial perception, and of the spatial properties of mental representations; 
studies in image-processing, for example in automatic analysis of X-ray images for medical and 
other purposes: Randell, Cui and Cohn 1992, Freksa 1992, Varzi 1993, Smith 1993, Casati and 
Varzi 1994;  



– contributions to qualitative or ‘naive’ physics and to the field of common-sense reasoning: 
Forbus 1984, Hayes 1985, Hager 1985, Thom 1990, Petitot and Smith 1990, Randell, Cui and 
Cohn 1992, 1992a, Smith 1992, Smith and Casati 1994;  

It is, however, in work in the area of cognitive linguistics on the part of Lakoff, Talmy, 
Langacker, Jackendoff and others that topological notions have been most explicitly and 
systematically applied. (See especially Talmy 1977ff., Brugman and Lakoff 1988, Lakoff 1989, 
Jackendoff 1991, and the related work of Petitot 1982ff., and Wildgen 1982f.) The importance of 
topology to the conceptual structuring effected by language is illustrated most easily in the case 
of prepositions. As Talmy notes, a preposition such as ‘in’ is magnitude neutral (in a thimble, in 
a volcano), shape neutral (in a well, in a trench), closure-neutral (in a bowl, in a ball); it is not 
however discontinuity neutral (in a bell-jar, in a bird cage). The task of formally defining the 
precise nature of the transformation which maps one in-structure onto another under these 
conditions and in such a way as to do justice to the features illuminated by Talmys many 
examples, is a difficult one; in the absence of appropriate formal theories of the 
mereotopological sort, however, the work of the cognitive linguists will remain subject to the 
charge that it has not gone beyond the stage of narrative evidence-gathering. As Wildgen points 
out in criticizing Talmy: The quasi-formal symbols in Talmys descriptions come from algebra, 
geometry, topology and vector-calculus, but the mathematical properties of these concepts are 
neither exploited nor respected. (1994, p. 32) Similar criticisms could be marshaled also against 
Lakoff and his associates, and it is perhaps above all in helping to meet such criticisms that the 
mereotopological framework can be of most immediate benefit to progress in cognitive science.  

The formal resources of mereotopology can be used, however, to generalize the project of 
cognitive linguistics beyond the linguistic sphere. We can conceive this project as one of 
providing an account of the ways in which we impose conceptualizations or categorizations or 
structurings on reality through our uses of natural language. The more general project, which 
bears comparison with recent work by Talmy, would consist in providing an account of 
conceptualizations and categorizations in general, i.e. not merely those imposed via uses of 
language but also those generated by other cognitive modes of access to reality, including 
perception, scientific theories, the map-making activities of the geographer, knowledge-sharing 
systems, and so on – a move, in other words, from cognitive linguistics to general ontology. Such 
partition-systems may be applied on different levels (thus atoms, molecules, cells, organisms, 
populations can all be conceived as products of partition in the highly general sense here at 
issue). In addition, partition-systems may involve boundaries of different sorts: for example, 
boundaries of different dimensions, boundaries which are more or less determinate, boundaries 
which are more or less enduring, connected and non-connected boundaries, interior and exterior 
boundaries, and so on. Perhaps the most important typological division amongst boundaries from 
our present point of view, however, is that between 1. natural or autonomous boundaries – those 
which reflect genuine divisions or heterogeneities in reality, and which thus exist independently 
of all conceptualizing or categorizing activity on our part: for example the boundaries around my 
body, heart, lungs, cells, and so on; and 2. boundaries which correspond to no genuine local 
heterogeneity or natural divisions on the side of the bounded entities themselves: for example the 
boundaries between the Northern and Southern hemispheres or between one calendar month and 
the next. Let us call boundaries of the first sort genuine or bona fide boundaries, boundaries of 
the second sort fiat boundaries, a terminology that is designed to draw attention to the sense in 



which the latter owe their existence to acts of human decision or fiat or to cognitive processes of 
similar sorts. (Smith 1994) Complete boundaries within a partition yield objects: countries on the 
globe, months on the calendar. Such objects, too, may be either bona fide or fiat objects in our 
suggested terminology. Examples of genuine objects are: you and me, the planet earth. Examples 
of fiat objects are: all geographical entities demarcated in ways which do not track qualitative 
differentiations or physical discontinuities in the underlying territory. Clearly geographical fiat 
objects will in general have boundaries which involve a combination of bona fide and fiat 
elements, for such objects will in most cases owe their existence not merely to human fiat but 
also to associated real properties of the relevant factual material. Some ontologists, and most 
cognitive linguists, have embraced a thesis to the effect that everything is a fiat object, that there 
are no partition-independent realities to which our humanly constructed partitions or 
conceptualizations would correspond. According to this view – a linguistic version of standard 
Kantian metaphysics which we might call linguistic idealism – the reality which exists 
independently of our experiences is unknowable as such. That to which we are related when we 
use language correctly is a humanly or culturally shaped and contoured reality, never the 
amorphous and unknowable matter of reality (in) itself. Two versions of linguistic idealism can 
be distinguished: a global version to the effect that, in the terminology introduced above, all 
objects (or all cognitively relevant objects) are fiat objects; and a local version to the effect that 
fiat-object-status is to be assigned only to objects in specific and limited areas – for example in 
the area of conventional units of measure. The local thesis has been employed especially in 
relation to social and conventional terms such as democracy, liberalism, obligation, claim, right, 
etc. Consider a term like just, as in John is just, John’s decision was just and so on. For the 
linguistic idealist the given term does not refer to some pre-existent species or quality of justice, 
but is rather a linguistic device by which we articulate the impressions which, say, a certain 
man’s decision makes on us – or the way in which it affects us – in judging it to be just ... 
[Justice] does not inhere in John simpliciter (“on its own grounds”) but only in relation to a 
person judging it, and only qua mediated by this relation. (Delius 1980, 109f) But does not a 
view of this sort come too close to the quite unacceptable thesis that there is no justice except 
where people find there to be justice or feel that there is justice? Do we not much rather have to 
ask in virtue of what it is that we can properly or correctly conceptualize our experience of Johns 
decision as an experience of a just decision? If there is nothing on the side of John and the 
decision which justifies this conceptualization, then the employment of the given predicate is 
surely completely arbitrary. If, on the other hand, there is something on the side of John which 
makes our statement true, then it is surely this fundamentum in re which we mean by justice: it is 
this which provides the necessary exterior friction which enables language of the given sort to 
gain a purchase on reality in the first place. There are, moreover, a number of further reasons 
why the general thesis of linguistic idealism must be rejected: how would the thesis that all 
objects are fiat objects be applied to the conceptualizers themselves, the demarcating subjects 
who construct the relevant systems of fiat boundaries? And how would fiat demarcation be 
possible if there were no genuine landmarks which we (or the first fiat demarcators) were able to 
discover, and in relation to which fiat demarcation becomes possible and objectively 
communicable? How would cumulative fiat demarcations be possible unless prior fiat 
demarcations had become allied, to some degree, with real perceptible differences, including 
differences in phonemes and graphemes, in relation to which later fiat demarcations could be 
drawn? In fact, as in geography so in relation to the demarcations we impose upon reality 
through language and in other ways, we have typically to deal with partitions which involve a 



mixture of fiat and bona fide demarcations. If I say blood flowed from his nose or he was 
bleeding from the nose then I am capturing a genuine event, genuinely distinct from other events 
(of the postman ringing the doorbell, the cat barking), but I am capturing this event via two 
distinct articulations, one or both of which must involve some fiat component. As Husserl 
already stressed in his Logical Investigations, only certain determinate parts of our expressions 
can have something corresponding to them in sensibly perceivable reality. When we consider the 
various simple judgment forms: A is P, An S is P, The S is P, All S are P, and so on, it is easy to 
see that only at the places indicated by letter-symbols ... can meanings stand that are fulfilled in 
perception itself. (1970, 779) As Husserl also points out, and his remarks here can be applied to 
our general topic of the nature of conceptualizations and categorizations of reality, each given 
object can be grasped in explicating fashion: in acts of articulation we put its parts `into relief’, in 
relational acts we bring the relieved parts into relation, whether to one another or to the whole. 
And only through these new modes of conception do the connected and related members gain the 
character of parts or of wholes. (Husserl 1970, 792) The world, from the realist, Husserlian 
perspective we are defending, has a certain sensible, material stuff. Within this stuff we can pick 
out via our use of language and by other means many different sorts of objects by drawing fiat 
boundaries within the realm of matter. By means of suitable acts of relating or of setting into 
relief we can make for ourselves a range of different sorts of structures and we can carve out for 
ourselves new objects in cumulation by cleaving the relevant matters along different sorts of 
contour lines. This drawing of fiat boundaries is a purely intellectual affair. But the objects it 
picks out are not denizens of any separate, purely intellectual realm. It is, rather, as if the 
corresponding object-boundaries arise in the same fashion as political boundaries come to be 
delineated within areas of virgin territory, i.e. in such a way as to leave all sensible, material 
structures and all real unities at least initially unaffected. Ontological conceptualizations or 
categorizations can now be defined, quite generally, as systems of complete boundaries which 
partition a given domain into objects or regions or elements of different sorts. More generally, 
they are systems of boundaries which generate, from a given whole as starting point, another 
whole with more or fewer or different parts. The framework of mereotopology is surely not 
sufficient to provide a coherent formal expression for all distinctions which are of importance for 
the general theory of conceptualizations and categorizations. For the purposes of the cognitive 
scientist and of the ontological engineer, however, it can provide a uniquely fertile starting-point.  
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