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Abstract
In this paper a mereological theory of frames of reference is presented. It shows

that mereology extended by the notion of granularity and approximation is suffi-
cient to provide a theory for location based features of frames of reference. More
complex theories, taking also into account orientation and metric properties can be
built as extensions of the presented theory. In order to take the hierarchical orga-
nization of frames of reference into account we introduce the notion of stratified
approximation to facilitate transformations between different levels of granularity.
This paper shows that the ontological grounding of the theory of frames of refer-
ence into mereology allows us to give a clear semantics to the notion ‘degree of
parthood’ which is central to the notion of approximation. It also shows how epis-
temic aspects which affect the use of frames of reference help us to understand the
feature of epistemic vagueness and the way it affects the notions of approximation
and of degree of parthood.
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This paper proposes a mereological theory of frames of reference. There is a broad

body of literature on frames of reference in at least four major areas: (i) in physics,
in particular in the contexts of mechanics and relativity �����������  "!$#&%(')� *+!$,.-)� ; (ii) in lin-
guistics, where people are interested in the semantics of spatial prepositions and in the
insights into human cognition, which language can provide /0��1(23�4� 5�6)7983:4� ;<��=38�� ; (iii) in
psychology where, for instance in work in the distinction between figure and ground
in human cognition ,?><!@83% ; and (iv) in artificial intelligence in attempts to formalize
human reasoning about space and time ;<��=�2�A�� B=3642���� ,DC�E�23% .

Mereology /0�GF�23�4� /0HA3-�� ,?!$>I83J , the formal theory of parthood, has not, hitherto, been
held to provide a basis for theorizing about frames of reference. This is probably
because the most salient features of frames of reference are characterized by ordering
relations and metric properties, features which require theories much stronger than
mereology for their formalization. Examples of metric frames of reference are the ones
used in physics to measure distance, weight, temperature, etc. Examples of frames of
reference based on ordering relations are those of cardinal directions (N,S,E, and W),
the distinction between left and right relative to your body axis, clock and calendar
time, etc. However it will turn out that mereology with only some extensions will be
sufficient to formally describe locational frames of reference.
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This paper will show that mereology can help us to understand the more basic fea-
tures of frames of reference which are already pointed to by the Gestalt psychologists in
their distinction between figure and ground ,?><!$8�% . Here the ground is seen as a frame
of reference in which the figure is located. An important point here is that the ground,
if it is to provide a frame of reference must have a relatively simple structure, which,
as we shall show, can be understood in terms of mereology. In order to use mereology
as a formal foundation, however, it must be extended by the feature of granularity. We
will refer to this theory as ‘granular mereology’. (See also ,?K"-)� for further arguments
along these lines.)

Since frames of reference are often quite coarse, as in the case of the frame of
reference which divides your surroundings into the part in front of you and the part
behind, the specification of location of the figure within its ground (or of the referenced
object within the frame of reference) is often rough or approximate. In this respect
we will build upon the theory of granular partitions by KL,.-3:)6 . It will turn out that
the resulting formalism is quite close to the notions of rough sets M"6(��2(' and rough
mereology M�,.23� , which are extensions of set theory and mereology developed in the
context of data analysis and data mining.

One important feature of frames of reference is heir hierarchical organization. An
example is the tree-like structure formed by the subdivision of London into Borroughs
such as Westminster, Camden, etc at one level of granularity and parks and neighbor-
hoods like Hyde Park, Soho, etc. at another level of granularity. Within a frame of
reference based on this tree structure the relation between entities and the frame of
reference, i.e., between figure and ground, can be specified at multiple levels of granu-
larity.

Consider the sentences
A ‘John is in Hyde Park’
B ‘The Rocky Mountains are in the Western United States’.

Here hierarchically ordered systems of places are used as frames of reference. As an
alternative to (A) one can say, for example:

A N John is in London.
And to (B) one can say

B N The Rocky Mountains are partly located in Montana, Idaho,
Wyoming, Nevada, Colorado, Utah, Arizona, and New Mexico.

Given formal representations of the location of entities within a frame of reference it
is often necessary to transform approximations between different levels of granularity.
The notion of stratified approximation introduced below will facilitate these kinds of
transformations.

It is important to distinguish between: (a) the study of the nature and the formal
structure of frames of reference, and (b) the study of their application in certain con-
texts. This is because (a) refers to the study of the formal ontology of frames of refer-
ence. (b), on the other hand, refers to the question of how epistemic issues, for example
issues pertaining to the limits on human knowledge and the representation of human
knowledge, affect the specification of location in frames of reference and our capabil-
ity to switch between levels of granularity in the ways illustrated in (A, A N ) and (B,
B N ). From the perspective of formal ontology approximations with respect to a frame
of reference are rough but crisp. Epistemic issues then give, as we shall see, raise to
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vagueness.
Vagueness hereby is understood in the sense that there are multiple, equally good,

approximations which are consistent with the knowledge at hand. This epistemic un-
derstanding of vagueness needs to be distinguished from semantic vagueness which
affects the ways names like ‘Mount Everest’ refer to parts of the surface of EarthB!$#&J3%4� O�6(=�-4')� KL,.-3:)P . We refer to the latter as to semantic vagueness and to the for-
mer as to epistemic vagueness. Since in this paper we exclusively focus on epistemic
vagueness it will be often sufficient to use the term vagueness.

In order to provide a mereological theory that addresses the points raised above we
start by extending mereology in order to take into account the feature of granularity. We
then give a very general formal account of levels of granularity. In the following section
we introduce the notion of approximation and show how stratified approximations can
be defined across multiple levels of granularity. We then discuss epistemic issues that
give raise to vagueness and extend the crisp formalism of stratified approximation in
order to take epistemic vagueness into account. In the end we discuss related work and
give the conclusions. The examples we use throughout the paper will be mostly spatial
in nature. Due to its general nature, the underlying theory can easily be extended to
domains of other sorts.

Q��R"	�SUTWVDXY
[Z�	�VDZ\V?	]VD����VDX^SUXY_[	]S0����`aSb	dcLSb	]��������
���X
In this section I give a formal definition of frames of reference as an extension of

the theory of granular partitions which was originally introduced in KL,�-):)6 .
Q�����feLgih[jlk.mon]pogik)p.k.g]k�qsr]k

A frame of reference is a triple,

tvuxwzy\{�|�}�~(|�y���|���~(|��l���
y\{�|�}�~

is a cell structure with a partial ordering defined by
}

which forms a finite tree.y��d|���~
is the target domain which is a partial ordering which satisfies the axioms of

extensional closure mereology (CEM) O64=�23� . The projection mapping
�z��{����

is
an order-homomorphism from

{
into

�
.

Before going into details, let us consider some examples. In figure 1 some cell
structures of frames of reference popular in artificial intelligence are shown. Part (i)
shows nine cells of a cell structure with ten cells (the tenth, which has all cells rep-
resented in the figure as subcells, is omitted here) are shown. When projected onto
the surface of the Earth in such a way that the horizontal lines are in line with lines
of longitude, the vertical lines are in line with lines of latitude, and the cell labeled �
coincides with the location of some entity � , then the regions carved out by projecting
of the cells onto the surface of the Earth are called ‘North of � ’, ‘Northeast of � , and
so on. The entity � and the portions of Earth carved out in the way described are parts
of the target domain

�
. The spatial projection of the cells onto the surface of Earth is

a specific form of the projection
�

. The frame of reference as a whole is formed by the
three components: cell structure, target domain, projection. For an extended discussion
of this specific family of frames of reference see B=)6(23� .
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The cell structure in part (ii) of the figure is projected onto its target domain in such
a way that a particular entity (often a human being) is located at the intersection of the
two diagonal lines in such a way that front, back, left and right are interpreted relative
to the entity in the center in the way indicated in the picture. The frame of reference
again is formed by three components: the cell structure depicted in the figure (again
the maximal cell containing all cells as subcells is omitted), the target domain, and the
projection of the cell structure onto the target domain. For an discussion of frames of
reference of this kind see ;I��=32�A and for a discussion of frames of reference depicted in
(iii) see B=3�G2�� .
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Figure 1: Frames of reference used by Frank (i), by Hernandez (ii), and by Freksa (iii).

Frames of reference are not necessarily based on ordering relations. Consider
figures 2 and 3. The left part of Figure 2 shows a tree with minimal cells labeled���[� | ���i� | ���]� | ���U� | ���.� | �����

and non-minimal cells labeled
� �?� | ����� | � �)� | � �"�

. We have
����� } � �?�

,� �)� } �����
, etc. The targets of the cells are regions which are shown in Figure 3, e.g.,�sy � �[� ~Iu �

,
�sy ���]� ~<u �

, etc. (The target of the root cell, which is the plane as a whole,
is omitted here.)
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� - = � r �� ' = � s, f �� � = � t, u, e, f �
. . .�

min = � a, b, c, d, e, f �
Figure 2: A tree structure with levels of granularity
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Figure 3: Depictions of the levels of granularity
� ' | � � | � min.
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In the remainder of this section we discuss the components of frames of reference
from a mereological perspective in greater detail. For this purpose we assume a sorted
first order predicate calculus with identity. We distinguish variables

� | � ' | � | � ' |���|�� ' |������
ranging over cells, and variables � | � ' |� �|3¡0|������ ranging over entities of some target do-
main

�
.

Q�¢Q�¤£¥k?¦�¦+m&§�g�¨�r?§�¨"gik.m
Let

y\{�|�}�~
be a cell structure. Using the primitive subcell relation

}
we define the

relations proper subcell ( ©«ª ), immediate proper subcell ( © ¬ ), cell-overlap ( ©Y�® ) and
predicates for the root cell ( © =)¯�¯�° ) and for atoms ( ©^± ° ):

© ª ��² �Y³ � }W�µ´·¶<y � u¸�b~
© ¬ � }I�Y³ �¹² �º´�¶<ya» � ~4y �¥²¼� ´ �d² �U~
© "® ½º¾ � �^³¿y�» � ~�y � } � ´ � }x�U~
© =)¯�¯�° root

y � ~+³Ày¢Á��b~�yÂ�Ã} � ~
©Y± ° Ä ��� ³�¶<ya»?�U~4yÅ� ²¸� ~

In this subsection the quantification ranges over cells in
{

. Here and in the remainder
of the paper leading quantifiers are omitted. The proper subcell relation

�¥² �
holds if�

is a subcell of
�

but
�

and
�

are distinct entities. The cell
�

is an immediate subcell of�
if and only if

�
is a proper subcell of

�
and there is no proper subcell between them.½º¾ � � is the relation of overlap between cells. The predicates root and At hold if the

entity to which they are applied is the root of a tree structure or an atom, i.e., a cell
without proper subcells.

The subcell relation
}

is governed by the following axioms:

(TM1)
� } �

(TM2)
y � ' } � � ´ � � } � ' ~sÆ � ' u � �

(TM3)
y � ' } � � ´ � � } � : ~sÆ � ' } � :

(TM4)
ya» � ~

root
y � ~

(TM5) ½º¾ � ' � � ÆÇy � ' } � � or
� � } � ' ~

(TM6)
�¹² �YÆÇy�» � ~�y �d² �º´�¶ ½º¾ ��� ~ ÈvÉËÊ

(TM7)
ya»?�U~4y Ä � �µ´¼�d} � ~

(TM8)
¶ Ä �"� ÆÌya» � ' |�������| � # ~�y�y\Í ')Î�!ÅÎ�#

� ! ²¤� ~"´yÂ�U~\� ²¸� ÆÐÏ
'(Î�!�Î�#

�Yu � ! ~�~
Here TM1-3 ensure that

}
is a partial ordering. In TM4 we demand that there is a

root cell which has all cells in
{

as subcells. Using TM2 we can then prove that there
exists exactly one root. TM5 rules out the possibility of partial overlap of cells. From
this it follows that there cannot occur any cycles and the resulting structure is a tree.
TM6 rules out cases where a cell has only a single proper subcell. TM6 is known in the
literature as the weak supplementation principle ,.!$><8�J . TM7 ensures that every cell
has at least one atom as subcell. Finally TM8 is an axiom schema which ensures that
every cell is either an atom or has finitely many subcells.

Using TM1, TM5, and TM6 we then can prove that the strong supplementation
principle (SSP) holds (T1). The SSP tells us that if

�
is not a subcell of

�
then there
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exists a
�

which is a subcell of
�

and which does not overlap
�

. From SSP then imme-
diately follows the extensionallity of overlap (T2).

ÑµÒ ¶<y � }x�U~sÆÇy�» � ~�y � } � ´z¶ ½º¾ � �b~Ñ¹Ó � uÔ�DÕÖyÅ×�~4y ½º¾ × � Õ ½º¾ ×Ø�b~
The extensionallity principle (T2) tells us that if that if whatever cell overlaps

�
also

overlaps
�

then
�

and
�

must be identical. From this it follows that there cannot be
distinct cells which coincide in the same sense in which the city of Vienna and the
Austrian Federal State of Vienna coincide.

One can see that axioms TM1-TM8 constrain cell structures to be finite trees. Con-
sequently, we have the following metatheorem:
Metatheorem 1 The class of models of axioms (TM1-TM8) is identical to the class of
finite trees.

Q�$Ù"�¼Ú�h[g)Û�k?§ÝÜ�n0jÞh[ß�q
ya��|���~

is the target domain which is taken to be a partial ordering which satisfies
the axioms of extensional closure mereology O"64=�23� . Based on the primitive

�
we define

the relations of proper parthood and overlap among entities in the target domain:

©�à � wx Y³ � �¼ ¥´z¶<y � uÔ b~
DO ½ �  Y³¿ya»b¡D~4ya¡^� � ´Ô¡^�¤ U~

In this section quantification ranges over entities in the target domain
�

.
We continue by defining the sum of two entities � and

 
in
�

as the entity
¡

which
is such that anything overlaps

¡
if and only if it overlaps � or

 
. Similarly we define

the product of two entities � and
 

as the entity
¡

which is such that anything overlaps¡
if and only if it overlaps � and

 
.

y ©«á ~ �âá  ^uÔ¡ã³¿yÅ×¹~�y ½ ×�¡?Õzy ½ × � or ½ ×Ø U~�~y ©«ä ~ �âä  Yu·¡ã³vy�×¹~4yaÊ·×�¡?ÕzyaÊÔ× � ´ÔÊÔ×Ø U~�~
In addition to reflexivity, antisymmetry, and transitivity (referred to by M1-M3) the

parthood relation is characterized by the following axioms:

åÖæ ¶LÊ �  YÆÇy�»b¡?~�y�Ê·¡ � ´·¶ ½ ¡. b~åvç ya»U¡?~�yÅ×¹~�y ½ ×�¡.ÕÖy ½ × � or ½ ×Ø U~�~åéè ½ �  YÆÇy�»b¡D~4yÅ×�~4y�Ê�×�¡?ÕzyaÊÔ× � ´ÔÊÔ×Ø U~�~å¿ê ya»b b~�y � ~ � �¼ 
M4 is the strong supplementation principle. M5 and M6 ensure that binary sums exist
for arbitrary entities in

�
and that a product of two entities � and

 
exists whenever

both entities overlap. M7 ensures that there exists a universe of which everything in�
is a part. Using M4 we can then prove that sums, products, and the universe are

unique if they exist. One can also prove that summation is associative and hence it is
permissible to write finite sums of the form � u � ' á ����� áÞ� # .
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As in the domain of cells we can prove that the extensionallity principle holds (T3).
There might be domains in which this is too strong, dealing with such issues however
requires a more elaborate theory, which is beyond the scope of the present paper.

Ñ�ë � u¸ bÕzy�×¹~4y ½ × � Õ ½ ×Ø U~

Q�@ì��fíµgin]î�k]r?§Gß�n[q
The relationship between cell structure and target domain is established by the bi-

nary relation of projection, ï , which holds between cells and entities. Corresponding
to ï there is a converse relation ï holding between entities and cells. Using these
primitive relations we can define their functional counterparts.

©âð � uÔ� � ³ ï � �© ð � u � � ³ ï¤� �
Projection is then governed by the following axioms:

t åñÒ ï � � ´ ï �  YÆ � uÔ t åvÓ ï � ' � ´ ï � � � Æ � ' u � �t åéë ï � � Õ ïØ� �t åÖæ ya» � ~4y ï � � ~t åvç � ' } � � ÕÖyÅ� � ' ~<�zy�� � � ~
GM1 and GM2 ensure that ï is a one-one mapping. GM3 introduces ï as the converse
of ï . GM4 makes ï a total function and GM5 ensures that

�
preserves the ordering

structure.
From ©Yð , © ð , and GM1-4 then immediately follows that

�
and

�
behave like

inverse functions wherever
�

is defined (T4 and T5). Using GM3, GM5, Dð , D ð , T1
we then can prove (T6) which tells us that

�
is indeed an order homomorphism. We

then prove (T7) and (T8) using T1, GM5, and T6. This tells us that both
�

and
�

preserve the tree structure.

ÑØæ � u �sy�� � ~Ñ¹ç ya» � ~4y ï¹� � ~sÆ � u·�sy � � ~Ñ�è y�y�» � ~�y ï � � ' ~�´¿ya» � ~4y ï � � � ~�~+ÆÇy � ' � � � Õ � � ' ² � � � ~Ñ�ê ¶ � ' ²¸� � ÆÇy�»b¡D~4y�¡Ã�zyÅ� � ' ~�´·¶ ½ ¡�yÅ� � � ~�~Ñ�ò y�y�» � ~�y ï � � ' ~�´¿ya» � ~4y ï � � � ~�~+Æ� ¶ � ' � � � Æóya» � ~4y �Ã² y � � ' ~�´·¶ ½ � y � � � ~�~ �
Theorems T6-T8 tell us that if we are only interested in those entities in

�
which

are targeted by cells in
{

and mereological relations between those entities then it is
sufficient to refer to the cell structure as a proxy for the more complex target domain.

Ù"��ôõV?ö[VD`�X^
�ZØ_[	]S0����`aSb	��Å�)÷
Let

t¿uxwÖy\{�|�}�~(|iya��|���~4|��l�
be a frame of reference with cell structure

y�{Ø|�}�~
.

Metatheorem 1 tells us that we now can talk about cell structures in the same way as
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we talk about finite trees. Let ø be the tree representation corresponding to the cell
structure

y\{�|�}�~
. We then can specify a frame of reference as

tñuxw ø |�y���|���~(|��¤� ,
where ø is a finite tree, and

y��d|���~
and

�
are target domain and projection as discussed

above. Consequently, we can talk about cell structures at the level of models rather than
at the level of the formal theory.

The advantage of talking about finite trees rather than about cell structures is that
we can use a set-theoretic language and standard mathematical notation in order to talk
about trees. This makes the whole formalism much simpler.

Ù"�����fíµgin.ùk.g.§�ß�k�mon]po¦Åk�úUk?¦¢mon]p«Û0g]h0qL¨�¦Åh0g.ßG§Gû
Let

tvuxw ø |�y��d|���~(|��ü� be a frame of reference with tree structure ø .
Definition 1 A cut

�
is a cut in the tree-structure ø is a subset of

{
defined inductively

as follows ý,?23% :
(1) � � � is a cut, where

�
is the root of the tree;

(2) For any cell z let d(
¡
) denote the set of immediate subcells of

¡
and let¾ be a cut with

¡^þ ¾ and d(
¡
) ÿu�� , then

y ¾�� � ¡ � ~�� d(
¡
) is a cut.

We can now define levels of granularity as cuts in the tree structure. For example the
levels of granularity in the tree structure in the left of Figure 2 are listed in the right
part of the figure.

Using Definition 1 and (TM1-8) we can prove that the cells forming a level of
granularity are pair-wise disjoint (T9) and that levels of granularity enjoy a weak form
of exhaustiveness in the sense that every cell

�
in
{

is either a subcell or a supercell of
some cell

� N in the level of granularity
�

at hand (T10) ý,?23% .
Ñ�� yÂ� ' þ � ´¼� � þ � ~+ÆÇy ½�� � ' � � Æ � ' u¼� � ~ÑµÒ � ya» � N ~4y � N þ � ÆÇy � } � N or

� N } � ~�~
Definition 1 captures only certain necessary conditions that characterize levels of

granularity at the most basic level: pairwise disjointness and weak exhaustiveness, two
properties which are purely mereological in nature. More specific characterizations
of levels of granularity may include constraints on the type of entities that form the
level of granularity. For example consider a cell structure targeting a human being.
One level of granularity might contain only biomolecules where another might contain
only tissues or only organs. Definition 1 in its basic form admits any kind of mixture
of different kinds of things to forming a level of granularity provided only that they
satisfy the properties listed in definition 1. In other cases it might be useful to include
also metrical notions, for example in order to require that objects forming a certain
level of granularity fall into a certain range of magnitudes *õ¯�#�-4' . For the purpose of
this paper, however, the presented definition will be sufficient.

Ù"�¢Q�¼Ú
	kfÛ0gih[qL¨�¦Åh[g�ßG§�ûÞn[g]Ü�k.g.ß�qÛ
Let

� ' and
� � be levels of granularity in a given granularity tree. We define an

ordering relation
� ' � � � as follows:

©� � ' � � � ³¿y � ~�y � þ � ' ÆÌya»?�U~4yÅ�dþ � � ´ � }x�b~�~
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Using TM1-3 and the extensionallity of sets we can prove that
�

is a partial ordering
using induction over the underlying tree structure:

ÑµÒ.Ò � � �ÑµÒ]Ó � ' � � � ´ � � � � ' Æ � ' u � �ÑµÒië � ' � � � ´ � � � � : Æ � ' � � :
This ordering includes at one extreme the level of granularity which consists only

of the root cell as maximal element and at the other extreme the level of granularity
formed by atomic (or leaf) cells as minimal element. The former is the coarsest level of
granularity and the latter is the finest level of granularity. The corresponding structure
is called the granularity ordering of ø .

The granularity ordering now insures that, given levels of granularity
� ! � ���

, then
there exists a mapping � ! � � � ! � ���

such that:

©���� ! � � u � ³ � þ � ! ´ � þ ��� ´ � } �
Using © � , © � , T9 and T10 we then can prove that � ! � is indeed a total and surjective
mapping (T14-T16).

ÑµÒ�æ � ! � � u � ' ´ � ! � � u � � Æ � ' u � �ÑµÒ]ç y � ! � ��� ´ � þ � ! ~+ÆÇya» � ~�y � u � ! � � ~ÑµÒiè y � ! � ��� ´ � þ ��� ~sÆÇya» � ~4y � u � ! � � ~
Ù"�$Ù"���¿k.gik]n�¦Ån]Û0ß�r]h�¦�rin[jüj ¨�¦Åh�§Gß�úUk.qËk.m�m

We can now distinguish two classes of levels of granularity: commulative and non-
commulative. The former are levels of granularity which are such that the targets of
their cells sum up to the target of the root cell. The levels of granularity in Figures 2
and 3 are of this type. We call such levels of granularity commulative KL,�-):)6 .

On the other hand there are levels of granularity which do not have this property. An
example of a non-commulative frame of reference which is formed by the cells Hyde
Park, Soho, Buckingham Palace, Downtown, London, York, Edinburgh, Glasgow, Eng-
land, Scotland, Great Britain, Germany, Europe and the corresponding nesting, as given
in Figure 4.

Europe

Great Britain Germany

Scottland

York London (L)

England

Edinburg (EB) Glasgow

SuburbsDowntown

Soho (SH) Buckingham PalaceHyde Park (HP)

� - � Europe �� ' � Great Britain
|
Germany �� : � York

|
London

|
Scotland

|
Germany �� A � York

|
Hyde Park

|
Soho

|
Buckingham Palace

|
Suburbs

|
Edinburgh

|
Glasgow

|
Germany �

Figure 4: A place-based frame reference with non-commulative levels of granularity.

As another example, consider the frame of reference yielded by taking Figures 2
and 3 but deleting

�
as minimal cell and by assuming that the root cell covers the whole
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plane and that
� ' and

� � sum up to
� - . In this case the level

�
min fails to sum up to the

whole plane and in particular the cell
�

fails to sum up to the cell
� þ � � . Instead of

the cell
�

we have ‘empty space’ or a hole (which can be thought of as space we know
nothing about).

Formally we define commulativeness as follows. Let
t

be a frame of reference
with tree representation ø . A level of granularity

�
in ø is commulative if and only

if the mereological sum of the targets of its cells is identical to the the target of the
root-cell in the underlying frame of reference:

© Com ¾���� y � ~+³ � u � ¡ ' |�������|3¡ # � ´vya»b¡D~4y � ��� � y�¡D~�´vy���¡D~ËuÔ�d¡ ' á ����� á �d¡ # ~4�
Obviously, the root cell is always commulative. A frame of reference is commulative
if and only if all of its levels of granularity are commulative. Otherwise it is non-
commulative. For further discussion see KL,.-3:)6 .
ì����dc�c�	�
����TWSU��V `a
��Sb�i��
��¸���¸S Z�	�SUTWVf
�Z�	�VDZ\V.	�VD����V
ì��������! �h�r?§µ¦ÅnDrih�§�ß�n0q

Let
t w y�{Ø|�}�~(|iya��|���~4|��ñ�

be a frame of reference and let � be an entity of
the target domain

�
. We say that the location of � in

t
is the cell

�
if and only if

�
projects onto � ( © / ). This means that location is just another name for the converse of
projection: © / � � � ³ ï¤� �
We then can prove that � satisfies the following axioms of a location relation® O�23% :

ÑµÒ�ê � � � ´ � � � Æ � u �ÑµÒiò � �¼ µ´ � � � ´ �   � Æ � } �
From our definitions it immediately follows that location is a partial relation. In

fact most of the entities of the target domain
�

will not be located in the frame of
reference in the way described above. This is hardly surprising since otherwise the
frame of reference would be as complex as the target domain itself. It follows that we
need a more general relation in order to characterize the relationship between entities
in the target domain and the relevant frame of reference.

ì��¢Q��"ãn[¨�Û#	·h.ù�ù�g]n# [ß�jÞh[§�ß�n[q
We start by defining additional relations between entities in

�
:

©Ã©%$ ©%$¼�  ^³�¶ ½ �  © Ê ½ Ê ½ �  Y³ ½ �  µ´·¶ � �¼ º´�¶� d� �©%& É ½ & É ½ �  Y³·Ê ½ �   or � w¼ 
Two entities are disjoint if and only if they do not overlap (DDR). Two entities overlap
partially if and only if they overlap but neither is part of the other (DRPO). Two entities
are in the relation of non-symmetric overlap if and only if they overlap partially or the
first is a proper part of the second.
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We now can prove that, for arbitrary entities � and
 

in the target domain, one and
only one of the relations ©'$¸�   , & É ½ �   , or

 d� � holds:ÑµÒ(� ©%$¸�   or & É ½ �   or
ÊÔ  �Ñ¹Ó � ¶<y ©%$¸�  µ´ & É ½ �  U~Ñ¹ÓbÒ ¶<y ©%$¸�  µ´ÔÊÔ  � ~Ñ¹Ó�Ó ¶<y & É ½ �  º´·Ê¸  � ~

Let
t uWw ø |iya��|���~4|���� be a frame of reference with tree structure ø . Coars-

ening is a is a ternary relation between an entity � in the target domain
�

, a level
of granularity

�
in the underlying frame of reference, and a mapping ) of signature) � � �+*

, where
*

is a totally ordered set of three values fo
�

po
�

no :

© Appr Appr � � ) ³¿y � ~�y � þ � ÆÇy�y ) � ~+u
fo
Õzy�� � ~<� � ´y ) � ~+u

po
Õ & É ½ � yÅ� � ~�´vy ) � ~su

no
Õ ©'$¤� yÅ� � ~�~�~

We call fo , po , and no approximation values and ) an approximation mapping.
We then can prove that coarsening with respect to a given level of granularity is

unique: Ñ¹Ó&ë
Appr � � ) ´

Appr � � ) N Æ ) u )oN
Hereby we say that two mappings are identical if and only if their domains and co-
domains are identical and identical entities in the domain are mapped to identical enti-
ties in the co-domain. Since coarsening is unique we can define a coarsening function:

© appr appr � � u ) ³
Appr � � )

Often we consider only a fixed level of granularity. We then either write
�

as a
subscript or omit it completely (i.e., we write appr ,õ� u ) , or appr � u ) instead of
appr , � u ) ). If we apply the convention to use non-capitalized variables � |� �|3¡ for
entities and capitalized variables ) |.-+|({ for the corresponding approximation map-
pings then we can omit the reference to the coarsening function appr completely and
write ) in order to refer to the rough approximation of the entity � . Sometimes we will
use the notation ) , in order to refer to the approximation of the entity � with respect
to the level of granularity

�
.

Consider the approximation ) and let
�

be the underlying level of granularity and
let
� þ �

. The value of ) �
is fo if

� �
is a part of � , it is po if � overlaps some

but not all of
� �

, and it is no if there is no overlap between � and
� �

. Consider, for
example the approximation of the entities

�
and / in Figure 5 (iii). Given the level of

granularity
� u � � | � | � | � | � | � � we have

yaÉ � ~su
po ,

yaÉ � ~su
fo , and

y10 � ~su
no .

Based on the notion of coarsening we now define an equivalence relation between
entities in the target domain

�
in terms of identity of approximation:

©2 �43 ,  Y³ appr � � u appr
  �

From © Appr and ©2 it follows immediately that 3 , is reflexive, symmetric, and tran-
sitive (T24-T26) Ñ¹Ó�æ �53 , �Ñ¹Ó�ç �53 ,  âÆ   3 , �Ñ¹Ó&è �53 ,  º´¸  3 , ¡ãÆ �43 , ¡
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(i) (ii) (iii)

b
c

de
f q = 

s =

v =

t =

z =
a

Figure 5: Rough location of the regions / , � , 6 ,
�

and
¡

within the levels of granularity� ' , � � , and
�

min.

In Figure 5 (iii) we have
¡ 3 ,87:9<; 6 . In Figure 5 (i) we have

¡ 3 ,>= 63 ,>= /?3 ,>= � .
In the remainder we omit the subscript where there is no danger of confusion.

An important feature of frames of reference is the fact that they provide means for
a certain sort of abstracting or economizing information. That is, we can talk about
entities in the target domain not in terms of their exact location but rather in terms of
approximations. Entities with identical approximations cannot be distinguished. This
significantly simplifies the structure of the target domain and facilitates approximate
reasoning K�,?2384� K�!@°Â-3��� K�,.-)� .
ì��$Ù"�A@L§Gg]h[§�ßCBµk]Ü¤h.ù�ùLgin# [ß�jÞh�§Gß�n[qLm

Frames of reference have a hierarchical structure and therefore entities can be ap-
proximated at different levels of granularity. We saw examples in natural language in
sentences A and A N and B and B N in the introduction and we also saw this in the exam-
ple depicted in figure 5. We now introduce the notion of stratified approximations in
order to to capture these features of frames of reference formally.

Let
t uWw ø |iya��|���~4|�� �

be a frame of reference with levels of granularity� ' |������4| � # ; let
t

be mereologically commulative, i.e., ¾���� � ' ´ ������´ ¾���� � # ; and
let � be an entity of the target domain

�
. We have unique approximations ) , = |�������| ) , ;

at different levels of detail (T23).
Let DFE! � u �G) , 9IHKJ y � ! � H ~�uML � be the set of approximation values under

y ) , 9 ~
with respect to the subcells

H þ � ! of the cell
LÞþ � �

. Whenever
� ! � � �

we define a
generalization mapping N ! �µ�O*¼�P*

with

©RQ 9TS y N ! �¥y ) , 9 ~�~ H u UVW VX fo iff DZY � 9TS\[�]! � u � fo �
no iff DZY � 9TS [�]! � u � no �
po otherwise

We can then prove the following:

Ñ¹Ó?ê � ! � ��� ÆÇy � ~4y � þ � ! ÆÌy � ~4y�y N ! � y appr , 9 � ~�~ � u¿y�y
appr , S � ~ � ! � ~ � ~

Theorem (T27) tells us that the following two ways of computing generalizations of
approximations yield the same result:

1. We first map the cell
�

in
� ! to its supercell in

���
by means of � ! � and then apply) ,^S , i.e., we perform the composition of the mapping � ! � and ) ,^S .
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2. We first map the cell
�

onto its approximation value and then generalize the
approximation by means of N ! � , i.e., we perform the composition of the mapping) , 9 and N ! � .

In the first case we perform the generalization on the level of cells and in the sec-
ond case we perform the generalization on the level of approximation values. This is
equivalent to saying that the following diagram commutes:

��� ) ,^S�_ *
� !

� ! �
`

) , 9 _ *
N ! �
`

Following a�6�¯�232 and K�,.-):3C we now define:
Definition 2 A stratified approximation is a family of approximations ) , = |������ ) , ; ,
such that whenever

� ! � � �
we have

y H ~4y H þ � ! ÆÇy N ! �¥y ) , 9 ~�~ H uÀy�y ) , S ~ � ! �i~ H ~ .
Stratified approximations allow us to represent entities in the target domain at different
levels of granularity.b��c¹cL��X���VDTW���döUSU_���VD��V?XiXYSU���¸	]
���_edÔSbc�c�	]
���aTWSb�i��
��

Approximations are crisp in the sense that within a given level of granularity for
every � there exists a unique approximation ) (T23). For every approximation there
exists a unique generalization mapping to every coarser level of granularity (T27).
Moreover, it is completely clear which entities can be distinguished with respect to
the underlying approximation and which are equivalent.

However frames of reference are artifacts of human cognition and their application
in concrete situations is subject to limitations of human knowledge. In this section we
will discuss three different sources of epistemic vagueness that arise due to different
kinds of limitations of human knowledge:

1. Limitations of knowledge about relations between an entity � and entities tar-
geted by the cell tree ø . This can be caused by limitations of our observations or
by limitation of knowledge about the projection.

2. Limitations of granularity of knowledge: The approximation at hand is too coarse.

3. Limitations of knowledge about the underlying frame of reference: The un-
derlying frame of reference might be non-commulative in the sense defined in
(D ® ¯�> ).

Epistemic vagueness hereby is understood in the sense that there are multiple, equally
good, approximations which are consistent with the knowledge at hand.b������fËhbÛ0¨�k.qsk�m�mÝp�gin[j nhg&m�k.g.úbh�§�ß�n0qLm
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When using frames of references in a concrete situation knowledge about relations
between an entity targeted by the cell tree,

� �
, and an entity � is typically gained by

observations. Here it might be impossible to observe which of the relations holds:©%$ y�� � ~ � or
É & ½ yÅ� � ~ � or � �Öy�� � ~ . The property of joint exhaustiveness and pair-

wise disjointness of these relations (T19-22) supports the specification of knowledge
at coarser levels of granularity by means of disjunctions.

Either the entities
� �

and � overlap, i.e.,
É & ½ yÅ� � ~ � or � �zy�� � ~

or:
� �

is not a part of � , i.e.,
É & ½ yÅ� � ~ � or ©%$ yÅ� � ~ �

or: the relation between the entities in question is completely unknown, i.e.,©%$ yÅ� � ~ � or
É & ½ yÅ� � ~ � or � �Öy�� � ~ .

Notice, that in all these cases we represent knowledge, i.e., true justified beliefs, rather
than mere (false) belief.b�¢Q��fËhbÛ0¨�k.qsk�m�mÝp�gin[j�¦Åh�rjiÞn]p g]k.m�n[¦¢¨�§Gß�n[q

Knowledge about approximation is often limited in the sense that for a given entity� of the target domain
�

only the approximation ) ,89 is known, where
� ! is relatively

coarse level of granularity.
Consider Figure 6. Here we have entities, � ' | � � | � : in our target domain

�
, which

are approximated within a frame of reference consisting of five cells:
¡0|3¡ ' |3¡ � |�¡ : |3¡ A

such that
� - u � ¡ � and

� ' u � ¡ ' |�¡ � |3¡ : |�¡ A � . The level of granularity
� ' is mereo-

logically commulative, i.e.,
y��¡?~Yu yÅ�¡ ' ~ á yÅ�¡ � ~ á y��¡ : ~ á yÅ�¡ A ~ . The entity � '

has the approximation ) ,8k' ¡ u
po . One can easily verify in Figure 6 that we have) , k' u ) , k� u ) , k: but ) ,>=' ÿu ) , k� , ) , k� ÿu ) , k: and ) ,>=' ÿu ) , k: .

lRlRlRlRlRllRlRlRlRlRllRlRlRlRlRllRlRlRlRlRllRlRlRlRlRllRlRlRlRlRllRlRlRlRlRllRlRlRlRlRllRlRlRlRlRllRlRlRlRlRllRlRlRlRlRl
mRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRmmRmRmRmRmRm

nRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRnnRnRnRnRnRnRn
oRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRooRoRoRoRoRoRo

pRpRpRpRppRpRpRpRppRpRpRpRppRpRpRpRppRpRpRpRppRpRpRpRppRpRpRpRppRpRpRpRppRpRpRpRppRpRpRpRp
qRqRqRqRqqRqRqRqRqqRqRqRqRqqRqRqRqRqqRqRqRqRqqRqRqRqRqqRqRqRqRqqRqRqRqRqqRqRqRqRqqRqRqRqRq

z1 z2

z4 z3

z = z1+z2+z3+z4

z1 z2

z3

x2

z4

z2

z4 z3

x3x1

(a) (b) (c)

Figure 6: How vagueness arises in commulative frames of reference.

Now chose some � with approximation ) ,8k ¡Öu po and assume that all we
know about � is this approximation. At the level of granularity

� - we cannot say
whether � is distinct from � ' , � � , and � : since all entities are equivalent in the sense
that they cannot be distinguished. At a finer level of granularity we might potentially
be in a position to distinguish � from some of the � ! since the � ! have distinct and
incompatible approximations at this level of granularity.

However if all we know is the coarse approximation ) , k then the approximation
of the entities � ' , � � , and � : at the level of granularity

� ' are consistent with ) , k .
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Therefore, for example, � could be like � ' or like � � or like � : , in the sense that from
all we know about � it could have the approximations ) , = u ) , =' , or ) , = u ) , =� , or) , = u ) , =: .

Consequently, if we transform approximations from a coarse level of granularity to
a finer then epistemic vagueness arises. That is, disjunctions of possible relations that
can hold between the targets of the cells of the finer level of granularity and the entity
to be approximated arise.b�$Ù"��fËhbÛ0¨�k.qsk�m�mÝp�gin[j qsn0qsr(r]n[j jü¨�¦Åh�§Gß�úUk.qsk.m�m

Above we have shown that given an approximation ) , 9 with respect to a mere-
ologically commulative level of granularity

� ! then there exists always a unique gen-
eralization mapping to coarser levels of granularity

�t�
with

� ! � ���
. If we give up

the assumption that the underlying level of granularity is commulative, then unique
generalization mappings do not necessarily exist any more.

To see this consider Figure 7. Here we have entities, � ' | � � | � : in our target do-
main

�
, which are approximated within a frame of reference consisting of four cells:¡[|�¡ ' |3¡ � |�¡ : such that

� - u � ¡ � and
� ' u � ¡ ' |�¡ � |3¡ : � . Here

� ' is mereologically
non-commulative, i.e.,

yÅ�¡ ' ~ á yÅ�¡ � ~ á y��¡ : ~ á yÅ�¡ A ~IwéyÅ�¡D~
.

In Figure 7 (b) we have an entity � � with approximation
y ) , =� ¡ ! ~ u fo forÒ �vu+� ë

. This is consistent with
y ) ,8k� ¡D~su

fo as one would normally expect, but it
is also consistent with

y ) , k� ¡D~Ëu
po – the case depicted in Figure 7 (b). Consequently,

given the approximation
y ) ,>=� ¡ ! ~su fo , a disjunction of possible generalizations exist.

Similar is the situation in Figure 7 (c) where we have an entity � : with approximationy ) ,>=: ¡ ! ~Iu no for
Ò �Mu<� ë

. This approximation is consistent with
y ) , k: ¡D~<u

no
as one would normally expect, but it is also consistent with

y ) , k: ¡?~Iu
po – the case

depicted in Figure 7 (b). Consequently, given the approximation
y ) , =� ¡ ! ~Yu no a

disjunction of possible generalizations exist.
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Figure 7: How vagueness arises in non-commulative frames of reference.

}"�!~ºSU_���V Sbc�c�	�
����TxSb���a
[�
Limits of human knowledge cause epistemic vagueness regarding the approxima-

tion of entities within a frame of reference. Epistemic vagueness hereby means that
the relationships between entities in the target domain entities (also in the target do-
main) targeted by cells of the frames of reference are characterized by disjunctions of
possible relations rather than by one of the crisp relations specified in © appr. We now
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introduce the notion of vague approximation in order to reflect this phenomenon on
the formal level. It follows that this notion will be applicable to deal with the different
sources of vagueness discussed in the previous section. The presented formalism is a
generalization of the crisp approach discussed above.}"������fËhbÛ0¨�küh�ù�ùLgin# �ß�jlh�§Gß�n[qéh0qsÜ¸r.g�ß�m(ùLß�q"Û

Let
t w ø |�y���|���~(|��¿�

be a frame of reference. Vague approximation, CAppr
is a ternary relation between an entity � in the target domain

�
, a level of granularity�

in the tree structure ø of the underlying frame of reference, and a mapping �) of
signature �) � � � �* , where �* is the set �.� fo � | � po � | � no � , � fo

|
po � , � po

|
no � ,� fo

|
po
|

no ��� . Sets of values here represent disjunctions of possible approximation
values. To get an intuition assume that CAppr holds for the entity � , the level of
granularity

�
, and let �) be a mapping of signature �) � � � �* . Then the result of

applying �) to a cell
� þ �

is interpreted as a disjunction of possible relations between� and
yÅ� � ~

. For example, the value of
y �) � ~

is � po
|

no � if either � covers some but
not all of the interior of

yÅ� � ~
or if there is no overlap between � and

yÅ� � ~
.

The elements of �* are ordered by the subset relation. We obtain a lattice structure
by taking the lattice operations join and meet to be set union and intersection and by
adding the empty set as bottom element:

y �*A�5�b|��I|.�Ë~ . These operations generalize to
operations on finite sets � Ä and � Ä in the standard way.

Let CR
² y � ��*�~?�·y � � �*�~ be a binary relation between crisp and vague

approximations interpreted as ‘ ) , is a crisping of �) , ’. We define:

© CR CR ) , = �) ,8� ³ � ' u � � ´vy � ~�y � þ � ' ÆÇy ) , = � ~Iþüy �) ,8� � ~�~(�
This means that ) , is a crisping of �) , if and only if for all cells

�
of the underlying

granularity level
�

we obtain
y ) , � ~ by choosing one element of

y �) , � ~ . For example,
if we have CR )+�) and

y �) � ~�u � po
|

no � then
y ) � ~�u

po or
y ) � ~�u

no . We
say that the vague approximation �) is crisp if and only if it has only a single crisping:

© C\=3!$F E �(� u � L �) ³Ày ) ~4y�-ã~4y ¾ $�) �) ´ ¾ $ - �) Æ ) u�-â~
Using the definitions © appr and © 2 we can then immediately prove theorem (T28).

This tells us that in fact in © C\=�!¢F E we quantify over individuals of the target domain
rather than over mappings, i.e., higher order entities.

Ñ¹Ó&ò �(� u � L �) ÕÖy � ~4yÅ U~�y ¾ $ y
appr � ~ �) ´ ¾ $ y

appr
 U~ �) Æ ��3  U~

Vague coarsening then is a ternary relation, CAppr � � �) , which holds if and only if
the approximation

y
appr ,+� ~ is a crisping of �) , :
© CAppr CAppr � � �) ³

CR
y
appr ,s� ~ �) ,

It is important to notice that (a) CAppr is not a function, i.e., there may be multiple
coarsenings for the same entity; that (b) not every crisping of a vague approximation
of � is an approximation of � ; and that therefore (c) identity of vague approximation
does not imply equivalence between the entities approximated by the crispings.
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Nevertheless, we continue to use non-capitalized variables � |� �|3¡ for entities and
capitalized variables �) | �-^| �{ for vague approximations and write �) , in order to refer
to some vague approximation of the entity � at the granularity level

�
. Sometimes we

will also omit the superscript.}"�¢Q�A@L§Gg]h[§�ßCBµk]ÜWúUhbÛ0¨�küh.ù�ùLg]n� �ß�jlh�§�ß�n0qLm
Let

� ! be a non-commulative level of granularity and let DZ�! � u � y �) , 9 � ~ J y � ! � � ~su� � ²�� �* be the set containing the sets of approximation values under �) ,89 with respect
to the cells � � þ � ! J y � ! � � ~su � � . Whenever

� ! � ���
we define a mapping �N ! � � �*¸� �*

with:

©��Q 9TS y �N ! � �) , 9 ~ H u
UVVVVVVVVVVVW VVVVVVVVVVVX
� po � if �KDZY � 9CS [�]! � u � po �
� no

|
po � if � DZY � 9CS�[�]! � u � no �

� fo
|

po � if � DZY � 9CS�[�]! � u � fo �
� po

|
fo � if �KDZY � 9CS [�]! � u � po

|
fo �

� no
|

po � if � DZY � 9CS�[�]! � u � no
|

po �
� no

|
po
|

fo � if �KDZY � 9CS [�]! � u � no
|

po
|

fo �
� po � if � DZY � 9CS�[�]! � u �.�

Here �KDZY � 9CS�[�]! � is the intersection of the sets of approximation values in D�Y � 9CS�[�]! � . Con-

sider, again, Figure 7 (b). Assume that we have
y �) , =� ¡ ! ~Øu � fo � for

Ò ��u�� ë
and� ' � � - . In this case D Y � = kI� 9�]'G- is the set �.� fo ��� . Consequently we have

y �N '�- �) , 9� ~L¡
= � fo

|
po � which corresponds to our intuitions discussed above and the fact that the

underlying level of granularity is non-commulative.
We then can prove that �N preserves the crisping relation, i.e., if ) is a crisping of�) then

y N�) ~ is a crisping of
y �N��) ~ (T29)

Ñ¹Ó��
CR ) �) Æ

CR
y N5) ~�y �N �) ~

This is obviously much weaker that the result we had in the crisp case in form of
theorem (T27). However theorem (T29) tells us that if �) is a vague approximation of
the entity � then so is the generalization of �) .

In mereologically commulative levels of granularity we are able to define a slightly
stronger version of the generalization mapping �N . This is because, if

� ! is commulative
and �) , 9 is crisp in the sense of © C\=3!¢F E , then the vague generalization coincides with
the (crisp) generalization mapping N defined in © Q . We then define �N as the vague
generalization mapping which takes the distinction between commulativeness and non-
commulativeness of the underlying level of granularity into account:

©��Q 9CS y �N ! �ºy �) , 9 ~�~ H u�� y N5) , 9 ~ H if ¾���� � ! ´ �(� u � L �) , 9 ´ CR ) , 9 �) , 9y �N��) , 9 ~ H otherwise

Whenever
� ! is commulative and �) ,89 is crisp we apply crisp generalization mapping �

to the single crisping of �) ,89 . Otherwise we apply we apply �N as usual.
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Definition 3 A vague stratified approximation is a family of approximations �) , = |������ �) , ; ,
such that, whenever

� ! � � �
, we have

y H ~4y H þ � ! ÆÇy �N ! �¥y �) , 9 ~�~ H u¿y�y �) , S ~ � ! �i~ H ~ .
Consequently, vague stratified approximations are such that approximations at a

finer level of granularity can be transformed to an approximation at a coarser level of
granularity in such a way that the following diagram commutes.

��� �) ,^S _ �*
� !

� ! �
`

�) , 9 _ �*
�N ! �
`

Notice, however, that for a single entity of the target domain there might exist multiple
vague stratified approximations.}"�$Ù"��"ãk�B¥qsk.jlk.qË§

The notion of vague approximation allows us to define refinement from coarser to
finer levels of granularity. Obviously, if all we have is knowledge about approximation
at a coarse level of granularity then refinement adds vagueness in the sense defined
above. Formally we define refinement as a mapping � � �*¼� �* as follows:

©�� y ���) ~I�du D � ³¿y �) �b~su D ' ´¼�d}v�â´¼�dþ � ! ´�� þ ��� ´y�uG~
if D ' u � no � then D � u D ' ´y�u^uG~
if po

þ D ' then D � u � no
|

po
|

fo � ´y�u^u^u�~
if D ' u � fo � then D � u D '

Since
�

is a subcell of
�

it follows that: (i) if
�

does not overlap a given region
�

then
neither does

�
; and (ii) if

�
is a part of

�
then so is

�
. Vagueness arises only in cases

where
�

and
�

partially overlap. This is because in this case
�

and
�

may or may not
overlap. In fact

�
may even contain

�
. For refinement, mereological commulativeness

does not need to be considered, since it is not an additional source for vagueness.}"�@ì����fk)Û0g]kik.mon]poúbhbÛ0¨�k.qsk.m�m
Let �) and �- be vague approximations then �) is of less or equal degree of vague-

ness than �- if and only if every crisping of �) is also a crisping of �- :

©4  �)¢¡£�- ³¿y ) ~4y CR
y ) | �) ~+Æ CR

y ) | �- ~�~(�
Here ¡ is clearly reflexive, transitive, and antisymmetric.

The application of generalization in non-commulative levels of granularity and re-
finement increases vagueness in the sense that if generalization and refinement (refine-
ment and generalization) transformations are applied successively to the approximation�) the resulting approximation is of greater or equal vagueness than �) (T30 and T31)

Ñ�ë � �) ¡ y �N ! � � � ! ~ �)Ñ�ëUÒ �) ¡ y � � ! �N ! �]~ �)
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[	�§
Related work comes from two major sources: literature about rough sets and liter-

ature about frames of reference .¤ ������"ãn[¨�Û#	¸m�k?§Gm
Crisp approximations as introduced above are a generalization of rough sets M�6(��2)' .

Rough sets are an extension of set theory and are based on an indiscernibility relation ¨
on a set of objects

É
. Indiscernibility is an equivalence relation and creates a partition

of the underlying set into a set of jointly exhaustive and pairwise disjoint subsets. A
given subset ) }éÉ

can be approximated with respect to the partition of
É

by means
of lower and upper approximations:

©R© ) ³ �i� J«ª ��¬ } )Þ�© © ) ³ �i� J«ª ��¬ � ) ÿu�� �
The lower approximation of a set ) is the set of all � such that the equivalence class
of � with respect to ¨ is a subset of ) . The upper approximation of ) is the set of all� such that its equivalence class

ª ��¬ has a non-empty intersection with ) .
In the above we have used a mereological framework but we can interpret the target

domain
�

as a set and entities as subsets of
�

. The difference between our approach
and the rough set approach is that we start with a tree structure and levels of granularity
within this tree. A level of granularity is the counterpart of the partition induced by the
indiscernibility relation in the rough set approach. Sets forming levels of granularity
are pairwise disjoint (T9) and exhaustive in a weak sense (T10). They are, however,
not necessarily exhaustive in the strong sense in which a partition induced by an equiv-
alence relation exhausts a set. This is because levels of granularity are not necessarily
commulative. For commulative levels of granularity one can prove the equivalence of
stratified (i.e., hierarchically ordered) rough sets and approximations within frames of
reference KL,�-):)C .

In terms of the presented formalism one can define lower and upper approximations
as follows:

©R© ) , ³�õ  ª  d� � ´vy�» � ~4y � þ � ´¸ YuÀyÅ� � ~�~ ¬
© © ) , ³�õ  ª ½   � ´Ð´Àya» � ~�y � þ � ´¸ YuÀyÅ� � ~�~ ¬õ  ª  ¼� � ´vy�» � ~4y � þ � ´¸ ¤u yÅ� � ~�~ ¬ is interpreted as the sum of all

 
which are

parts of � and which are targeted by a cell in
�
. Since levels of granularity are by

assumption finite, the corresponding sums are finite too, and they can be computed by
a finite number of binary summations. We can then establish the relationship between
lower and upper approximations and the equivalence relation defined in ©®2 by proving
theorem (T32). Ñ�ë.Ó y ) u�- ´ ) u -â~GÕ �53  

The approach presented in this paper allows us to take into account more explicitly
the nature of frames of reference, their hierarchical structure, and the epistemic issues
that come up when frames of reference are applied in specific situations. In particular
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we discussed several sources of epistemic vagueness which can be identified within the
presented. We then further extended the notion of rough sets in order to take vagueness
into account.¤ �¢Q��"ãn[¨�Û#	¸jÞk�g]k]n[¦Ån�Û0û

Rough mereology M",?2�� extends rough set theory by incorporating it into the mere-
ological framework of Lesniewski /0��F�2�� . On the other hand it extends mereology by
allowing degrees of parthood. Rough parthood, ¯¤�  éu ¡

, is a ternary functional
relation which is interpreted as ‘ � is a part of

 
to the degree of at least

¡
’.

There are no further assumptions on the structure of the domain of values specify-
ing degrees of parthood beyond the fact that it needs to form a complete lattice with
minimal and maximal element. For this purpose the unit interval

ª � | Ò ¬ of rational or
real numbers is often used. Given a set of entities, the prototypical way of defining
degrees of parthood among two classes formed by those entities is to count instances
that fall into each of them and then to compute a ratio:

©R° = ¯ ' ) -¿³�±³² ©Z´ a ²² © ² if ) ÿu��Ò
if ) u��

A closely related approach, which brings the indiscernibility relation ¨ underlying
rough sets into the picture, is to define of degrees of parthood as

©R° � ¯ � � -À³ ² µ ¶¸· ´ a ²² µ ¶t·�² �
Here

ª ��¬ is the equivalence class of entities in ) which are indiscernible from � , i.e.,ª ��¬ ³ �  dþ ) J �5¨   � .
There are different variants of this approach (including fuzzy sets ;I6 � 238 ) which

have proven to be quite successful for example in data mining applications. For an
overview see ¹�M",?238 . In the remainder we refer to this approach to rough mereology as
‘the data or observation driven approach’.

We now can show that the approach presented in this paper is in fact a special case
of rough mereology. We define:

©%$ Ê Ò $ Ê �   fo
³�Ê �  ©%$ Ê Ó $ Ê �   po
³ $ Ê ½   �©%$ Ê ë $ Ê �   no
³ ©%$   �

Clearly, fo
�

po
�

no form a lattice of the kind demanded above. From this
perspective the relations

Ê �   , $ Ê ½   � , and ©%$v�   represent different degrees of
parthood between � and

 
. We can then prove that all but one of the axioms of rough

mereology are theorems in our framework. The one axiom of rough mereology that is
not a theorem is an axiom postulating a null entity an entity which is a maximal part
of any entity in the domain at hand. Since we assume that the target domains

�
in the

presented framework satisfy the axioms of closed extensional mereology (M1-7) there
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does not exist a null entity in them.

Ñ�ë.ë ¯d�  b¡¹´ ¯^�  b¡ ' Æ ¡Ýu�¡ 'Ñ�ë�æ ¯d�0� foÑ�ë?ç ¯d�   fo
Æ ¯ ¡� 'º ¯ ¡ �Ñ�ë.è y ¯d�   fo
´ ¯   � fo

~sÆ ¯Ã� ¡º ¯  D¡Ñ�ëDê y�y�¡D~ ª ¯ ¡ � fo
ÆÇya» � ~�y ¯ � ¡ fo

´ ¯ �   fo
~ ¬ Æ ¯Ã�   fo

~Ñ�ë.ò y � ' |�������| � # ~�ya» � ~ � y�¡D~ ª ¯ ¡ � fo
ÆÌya»D×¹~�ya» � ~�y�y Ï

'(Î�!�Î�#
� ! u � ~sÆy ¯ ×¹¡ fo

´ ¯ × � fo
´ ¯ � � fo

~�~ ¬��Ñ�ëO� y � ' |�������| � # ~�ya» � ~4y Í ')Î�!ÅÎ�# ¯ � ! � fo
~

We then define

©R» =½¼ ' � ' ����� � # � ³ � ya¡?~ ª ¯ ¡ � fo
ÆÇya»D×�~4ya» � ~4y�y\Ï

'(Î�!�Î�#
� ! u � ~õÆy ¯ ×¹¡ fo

´ ¯ × � fo
´ ¯ � � fo

~�~ ¬��©R» � ¼ � � ' ����� � # � ³Ày�Í
'(Î�!�Î�# ¯ � ! � fo

~
and prove

Ñ�æ � y � ' |�������| � # ~�ya» � ~4y�y ¼ ' � ' ����� � # � ´ ¼ � � ' ����� � # � ~+Æ ¯   � fo
~4�

It follows that the presented formalism is a specific version of rough mereology.
We call it the ontology driven approach to rough mereology (modulo the existence of
the null-entity).

Now compare the data driven and the ontology driven approach. Rough mereology
was developed in the context of data analysis and is used in order to discover structures
in data sets. In other words its aim is to extract conceptual (and thus to a certain degree
ontological) structure from observations. Hereby no specific assumptions are made
about the nature of observations, sources of epistemic vagueness, the role of frames of
reference, and the role of the granular structure of the underlying domain. This has the
consequence that the semantics of the domain describing the degree of parthood tends
to be rather abstract and often mixes ontological and epistemic aspects.

This is reflected by a criticism that has often been raised against the data driven
approach, namely that the semantics of the values describing degrees of membership
is often not clear. What does ¯4) -ñu � � ê mean, beyond sequences of occurrences in
data sets? (A parallel criticism can be made in relation to many applications of fuzzy
set theory B"=3��2�A .)

On the approach pursued in this paper, making explicit the underlying assumptions
about the nature of observations, sources of epistemic vagueness, the role of frames of
reference, and the role of the granular structure of the underlying domain of entities
helps to give a clear semantics for the notion ‘degree of parthood’. As we have seen
in (DRP1-3), it is very easy to give a specific interpretation of degrees of parthood as
disjointness, non-symmetric partial overlap, and parthood. We have seen how, starting
out from there one can explore in a systematic fashion the effects of such epistemic
factors as limitations of observations, deficiencies of frames of reference.¤ �$Ù"�feLgih[jlk.mon]pogik)p.k.g]k�qsr]k
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As argued above, research on frames of reference has been pursued in areas like
physics, linguistics, psychology, and artificial intelligence. In the context of this pa-
per we focus on linguistic frames of reference, the figure ground distinction, and AI
approaches to frames of reference.

In linguistics it is well recognized that schematization, a process that involves the
systematic selection of certain aspects of a referent scene to represent the whole while
disregarding the remaining aspects, plays a fundamental role in descriptions of spatial
phenomena 5�6)7983: . More specifically, schematization is characterized by a distinction
between focal or primary object and reference or secondary object. This distinction
is closely related to the opposition between figure and ground in Gestalt psychology,?><!@83% . “The figure is a moving or conceptually movable object whose site, path, or ori-
entation is conceived as a variable the particular value of which is the salient issue. The
ground is a reference object (itself having a stationary setting within a reference frame)
with respect to which the figure’s site, path, or orientation receives characterization.”5�6)7983:

The formalism presented in this paper reflects the distinction between figure and
ground in terms of the distinction between levels of granularity (the ground) and en-
tities (the figures) which are approximated or whose location is specified with respect
to the ground. In language localizing an object (determining its location) is critical
and “involves processes of dividing a space into subregions or segmenting it along its
contours, so as to narrow in on an object’s immediate environment.” 5�6)7983: . This cor-
responds exactly to the approximation (approximate location) is defined in Definition© Appr.

In the AI community there is a wide range of attempts to formalize reasoning that is
supported by specific kinds of frames of reference. Consider the approach to cardinal
directions by Frank B=3642�� , or Hernandez’ cone-shaped reference frame, or Freksa’a
vector based frame of reference. All are defined by a partition of space at a certain
level of granularity and the localization of (point-like) entities within those regions.
Each formalism gains its reasoning powers from (a) the partition structure of the frame
of reference, (b) the location information of the entity or entities in the foreground, and
(c) additional specific assumptions about the structure of the frame of reference such as:
number of cells, shape of cells, the embedding of the cells in the plane. The assumption
that the entities are non-extended points is often made to simplify the representation
and reasoning.

In the presented framework we are able to deal with (a) and (b) in a general and
unified fashion. Moreover the presented formalism applies to extended entities rather
than to idealized points. The proposed stratifications allows us to do justice also to the
hierarchical character of frames of references. The importance of exploiting hierarchi-
cal structures for reasoning purposes was was pointed out for example in ¹Z¾i!$J384� ® B2�% .
It K�,?238 it was shown that the mereological union and intersection operations ( ©'¿ and©%À ) have corresponding pairs of operations at the level of approximations. It was
demonstrated in K�,.-)� and K�!@°Â-3� how these operations can be used for reasoning pur-
poses.

In the presented framework we do not have the resources to deal with (c) since this
requires theories which are stronger than mereology. Ways of extending mereology by
topological and morphological principles were discussed for example in O�6(=323� , ® O"2�A ,
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and ® K�H�H"23J . Extending the presented theory along those lines is subject of ongoing
research.Á
�ÃÂã
����.`���X��a
[��X

In this paper a mereological theory of frames of reference was presented. We
showed that mereology can help us to understand the more basic features of frames
of reference which are related to the distinction between figure and ground in gestalt
psychology. The ground is seen as frame of reference in which the figure is located.
We showed that mereology extended by the notion of granularity and approximation is
sufficient to provide a theory for location based features of frames of reference. More
complex theories, taking also into account orientation and metric properties of frames
of reference can be built as extensions of the presented theory.

Their hierarchical organization is an important feature of frames of reference. Given
approximations of entities within a frame of reference it is often necessary to transform
them between different levels of granularity. We introduced the notion of stratified ap-
proximation to facilitate those kinds of transformations.

We showed that in the attempt to understand frames of reference there are two
important aspects that need to be distinguished: (a) the study of the formal ontology of
frames of reference, and (b) epistemic issues that arise when frames of reference are
used in specific contexts.

The study of the first aspect helps to understand the the role of frames of reference
and the importance of their granular structure. The ontological grounding allows us to
give a clear semantics to the notion ‘degree of parthood’ which is central to the notion
of approximation. We then showed how making explicit the nature and limitations of
observations and properties of the embedding of the frame of reference into the target
domain (commulativeness) help us to understand the feature of epistemic vagueness
and the way it affects the notion of degree of parthood.Ä"�����G§��
�¦^`�VD��_[VDTWVD���iX

My thanks go to Barry Smith for helpful comments. Support from the Wolfgang
Paul Program of the Alexander von Humboldt Foundation and from National Science
Foundation Research Grant BCS-9975557: Geographic Categories: An Ontological
Investigation, is gratefully acknowledged.

�«Å��Æâ��ÇL`���
�_[	]SUcId�÷
[Bit02] T. Bittner. Approximate qualitative temporal reasoning. Annals of Mathematics and Artificial

Intelligence, 35(1–2), 2002.
[BS98] T. Bittner and J. G. Stell. A boundary-sensitive approach to qualitative location. Annals of

Mathematics and Artificial Intelligence, 24:93–114, 1998.
[BS02] T. Bittner and J. Stell. Approximate qualitative spatial reasoning. Spatial Cognition and

Computation, 2(4):435–466, 2002.
[BS03a] T. Bittner and B. Smith. A theory of granular partitions. In M. Duckham, M. F. Goodchild,

and M. F. Worboys, editors, Foundations of Geographic Information Science, pages 117–
151. London: Taylor & Francis, 2003.

23



[BS03b] T. Bittner and B. Smith. Vague reference and approximating judgments. Spatial Cognition
and Computation, 3(2), 2003.

[BS03c] T. Bittner and J.G. Stell. Stratified rough sets and vagueness. In W. Kuhn, M. Worboys, and
S. Timpf, editors, Spatial Information Theory. Cognitive and Computational Foundations
of Geographic Information Science. International Conference COSIT’03, pages 286–303.
Springer, 2003.

[CBGG97] A.G. Cohn, B. Bennett, J. Goodday, and N. Gotts. Qualitative spatial representation and
reasoning with the region connection calculus. geoinformatica, 1(3):1–44, 1997.

[CF95] Adrijana Car and A.U. Frank. Formalization of conceptual models for gis using gofer. Com-
put. Environ. and Urban Systems, 19(2):89–98, 1995.

[CV94] R. Casati and A.C. Varzi. Holes and Other Superficialities. MIT Press, Cambridge, Mass.,
1994.

[CV95] R. Casati and A.C. Varzi. The structure of spatial localization. Philosophical Studies,
82(2):205–239, 1995.

[DiS02] Robert DiSalle. Space and time: Inertial frames. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. 2002.

[Don01] M. Donnelly. Introducing granularity-dependent qualitative distance and diameter measures
in common-sense reasoning contexts. In C. Welty and B. Smith, editors, Formal Ontology in
Information Systems, pages 321–332. ACM Press, 2001.

[Ein51] A. Einstein. Relativity: The Special and the General Theory. New York: Crown Publishers
Inc., 1951.

[Fin75] K. Fine. Vagueness, truth and logic. Synthese, 30:265–300, 1975.
[Fra92] Andrew Frank. Qualitative spatial reasoning about distances and directions in geographic

space. Journal of Visual Languages and Computing, 3:343–371, 1992.
[Fre92] Chr. Freksa. Using orientation information for qualitative spatial reasoning. In A.U. Frank,

I. Campari, and U. Formentini, editors, Theories and Methods of Spatio-Temporal Reasoning
in Geographic Space. Springer-Verlag, 1992.

[Fre94] C. Freksa. Fuzzy systems in ai. In R. Kruse, J. Gebhardt, and R. Palm, editors, Fuzzy Systems
in Computer Science. Vieweg, Braunschweig, 1994.

[Haj98] P. Hajek. Metamathematics of Fuzzy Logic. Trends in Logic. Kluwer, 1998.
[Her86] A. Herskowitz. Language and Spatial Cognition - An Interdisciplinary Study of the Proposi-

tions in English. Studies in natural language processing. Cambridge University Press, Cam-
bridge [Cambridgeshire] ; New York, 1986.

[Her94] D. Hernandez. Qualitative Spatial Reasoning. Springer-Verlag, 1994.
[KPS98] J. Komorowski, L. Polkowski, and A. Skowron. Rough sets: a tutorial, 1998.
[Kui78] B. Kuipers. Modeling spatial knowledge. Cognitive Science, 2:129–154, 1978.
[Les92] S. Lesniewski. Foundations of the general theory of sets. In S. Srzednicki and B Rickey,

editors, Stanislaw Lesniewsk, Collected Works. Kluwer, Dordrecht, 1992.
[Lev96] S.C. Levinston. Frames of reference and molyneux’s question: Crosslinguistic evidence. In

P. Bloom, M.A. Peterson, L. Nadel, and M.F. Garett, editors, Language and Space, pages
109–170. Cambridge: MIT Press, 1996.

[LG40] H.S. Leonard and N. Goodman. The calculus of induviduals and its uses. Journal of Symbolic
Logic, 5:45–55, 1940.

[New26] I. Newton. The Principia: Mathematical Principles of Natural Philosophy. Berkeley and
Los Angeles: University of California Press, 1999, 1726.

[Paw91] Z. Pawlak. Rough sets : theoretical aspects of reasoning about data. Theory and decision
library. Series D, System theory, knowledge engineering, and problem solving ; v. 9. Kluwer
Academic Publishers, Dordrecht ; Boston, 1991.

[PS96] L. Polkowski and A. Skowron. Rough mereology: A new paradigm for approximate reason-
ing. Journal of Approximate Reasoning, 1996.

24



[RS95] P. Rigaux and M. Scholl. Multi-scale partitions: Application to spatial and statistical
databases. In M. Egenhofer and J. Herrings, editors, Advances in Spatial Databases
(SSD’95), number 951 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1995.

[SB02] B. Smith and B. Brogaard. Quantum mereotopology. Annals of Mathematics and Artificial
Intelligence, 35(1–2), 2002.

[Sch95] C. Schlieder. Reasoning about ordering. In A.U. Frank and W. Kuhn, editors, Spatial In-
formation Theory - A Theoretical basis for GIS, volume 988 of LNCS, Semmering, Austria,
1995. Springer-Verlag.

[Sim87] P. Simons. Parts, A Study in Ontology. Clarendon Press, Oxford, 1987.
[Smi85] B Smith, editor. Foundations of Gestalt Theory. Philosophia, Muenchen, 1985.
[Tal83] L. Talmy. How language structures space. In H. Pick and L. Acredolo, editors, Spatial

Orientation: Theory, Research, and Application. Plenum Press, New York, NY, 1983.
[Var96] A. Varzi. Parts, wholes, and part-whole relations: The prospects of mereotopology. Data and

Knowledge Engineering, 20(3):259–86, 1996.
[Var01] A. Varzi. Vagueness in geography. Philosophy and Geography, 2001.
[Yao99] Y.Y. Yao. Stratified rough sets and granular computing. In R.N. Dave and Sudkamp. T.,

editors, Proceedings of the 18th International Conference of the North American Fuzzy In-
formation Processing Society, pages 800–804. IEEE Press, 1999.

25


