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1. INTRODUCTION

This is a brief overview of formal theories concerned with the study of the notions
of (and the relations between) parts and wholes. The guiding idea is that we can dis-
tinguish between a theory of parthood (mereology) and a theory of wholeness
(holology, which is essentially afforded by topology), and the main question exam-
ined is how these two theories can be combined to obtain a unified theory of parts
and wholes.

We examine various non-equivalent ways of pursuing this task, mainly with
reference to its relevance to spatio-temporal reasoning. In particular, three main
strategies are compared: (i) mereology and topology as two independent (though
mutually related) theories; (ii) mereology as a general theory subsuming topology;
(iii) topology as a general theory subsuming mereology. This is done in Sections 4
through 6. We also consider some more speculative strategies and directions for
further research. First, however, we begin with some preliminary outline of mereol-
ogy (Section 2) and of its natural bond with topology (Section 3).

2. MEREOLOGY: A REVIEW

The analysis of parthood relations (mereology, from the Greek µερος, ‘part’) has
for a long time been a major focus of philosophical investigation, beginning as early
as with atomists and continuing throughout the writings of ancient and medieval
ontologists. It made its way into contemporary philosophy through the work of
Brentano and of his pupils, most notably Husserl’s third Logical Investigation, and
it has been subjected to formal treatment from the very first decades of this century.
Indeed, formal mereological theories have often been associated with a nominalistic
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stand—as an ontologically parsimonious alternative to set theory, dispensing with
abstract entities or (more precisely) treating all objects of quantification as individu-
als. This is true of the two main theories set forth in the early years, i.e., the system
of Leś niewski [38] and that of Leonard and Goodman [37] (emblematically called
Calculus of Individuals). However, there is no necessary between mereology and
the philosophical position of nominalism. As a formal theory, mereology is simply
an attempt to set out the general principles underlying the relationships between a
whole and its constituent parts, just like set theory is an attempt to set out the princi-
ples underlying the relationships between a class and its constituent members. Un-
like set theory, mereology is not committed to the existence of abstract entities. (The
whole can be just as concrete as the parts.) But this carries no nominalistic commit-
ment either. Mereology can be credited a fundamental role whether or not we take
the entire universe to be describable exclusively in terms of parthood relationships—
and its recent revival in connection with knowledge representation and conceptual
analysis in AI research bears witness to this prospect.

Historically, after Husserl’s original formulation, formal mereology grew out
essentially of the two theories mentioned above. In fact, although they came in dif-
ferent logical guises, these theories turn out to be essentially equivalent and provide
a common basis for most subsequent developments. They are rather strong theories,
though—that is, they incorporate principles that are neither obvious nor uncontro-
versial for the purpose of explaining the ordinary notions of part and whole. For our
purposes, it may be more convenient to neglect the chronological order and begin
with some more basic—albeit very sketchy—characterizations. (For a systematic
presentation of formal mereologies, see [22, 60,  61]. On its historical background,
see [11,  31]. For a wealth of annotated references, mostly in the philosophical tradi-
tion, see [63,  64].)

Barring for the moment the complications arising from the consideration of in-
tensional factors (such as time, modalities, and counterfactuals), we may view a
mereological theory as a first-order theory characterized first of all by some basic
“lexical” principles—principles setting out the basic semantic traits of the word
‘part’ (and of kindred notions). In particular, virtually every theory agrees on treat-
ing parthood as a partial ordering—a reflexive, antisymmetric, transitive relation.
We may call such a characterization Ground Mereology, regarding it as the common
basis of all part-whole theories.

DEFINITION 1. Ground Mereology [M] is the theory defined by the following proper
axioms for the Parthood predicate, ‘P’:
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(P1) Pxx;
(P2) Pxy ∧ Pyx → x=y;
(P3) Pxy ∧ Pyz  → Pxz .

(Here and in the following we assume a standard first-order language with identity
supplied with a distinguished binary predicate constant, ‘P’, to be interpreted as the
(possibly improper) parthood relation. The underlying logic is understood to be a
standard first-order calculus with identity.)

To be sure, this characterization is not entirely uncontroversial. For instance,
since [57] several authors have had misgivings about the transitivity of ‘P’ (the
handle is part of the door, the door is part of the house, but the handle is not part of
the house; see also [19, 27,  31,  45,  80] inter alia). However, this objection typically
involves a departure from the broadest possible notion of parthood that M  is meant
to capture, as the general intended interpretation of ‘P’ is narrowed by additional
conditions (e.g., by requiring that parts make a direct contribution to the functioning
of the whole). The objection may therefore be disregarded as long as we remain at a
purely extensional and sufficiently general level of analysis. (The intended non-
transitivity can always be recovered with the help of explicit specifications: A handle
is, say, a functional part of a door, the door is a functional part of the house, but the
handle is not a functional part of the house. More generally, where ‘φ’ is any for-
mula in the language, the implication:

(1) (Pxy ∧ φ[x,y]) ∧ (Pyz  ∧ φ[y,z]) → (Pxz  ∧ φ[x,z])

may well fail to be an M-theorem.)
Given (P1)–(P3), a number of additional mereological relations can be intro-

duced by exploiting the intended interpretation of ‘P’. In particular, M supports the
following useful definitions (see Figure 1):

(2) PPxy =df Pxy ∧ ¬Pyx (Proper Part)
(3) Oxy =df ∃z (Pzx  ∧ Pzy) (Overlap)
(4) Uxy =df ∃z (Pxz  ∧ Pyz) (Underlap)
(5) OXxy =df Oxy ∧ ¬Pxy (Over-Crossing)
(6) UXxy =df Uxy ∧ ¬Pyx (Under-Crossing)
(7) POxy =df OXxy ∧ OXyx (Proper Overlap)
(8) PUxy =df UXxy ∧ UXyx (Proper Underlap)

It is immediately verified that ‘PP’ defines a strict partial ordering whereas ‘O’ and
‘U’ are symmetric relations satisfying the following:
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(9) M  |–  Pxy → ∀z (Ozx  → Ozy)
(10) M  |–  Pxy → ∀z (Uyz  → Uxz).

(The converses do not hold, though they will hold in the strengthenings of M  con-
sidered below.) We can also define identity, as per the following immediate conse-
quence of (P2):

(11) M  |–  x=y ↔ Pxy ∧ Pyx .

In this case, the theory can be formulated in a pure first-order language (without
identity), as long as the axioms for identity are explicitly added to (P1)–(P3).

x y

Oxy Oyx

yx

Oxy Oyx

x y

Oxy Oyx

x y

Oxy Oyx

POxy POyx
PPxy PPyx x=y y=x

OXxy OXyx Pxy OXyx OXxy Pyx Pxy Pyx

UX xy UXyx

(Uxy) (Uyx) Uxy Uyx Uxy Uyx Uxy Uyx

(UX xy) (UX yx)

(PUxy) (PUyx)

Figure 1: The four basic patterns of mereological relationship. The leftmost pattern in turn corre-
sponds to two distinct situations (validating or falsifying the clauses in parenthesis) depending on
whether or not there is a larger z including both x and y.  

The ground theory M  may be viewed as embodying the “lexical” basis of a
mereological theory. Not just any partial ordering will qualify as a part-whole rela-
tion, though, and establishing what further principles should be added to (P1)–(P3)
is precisely the question a good mereological theory is meant to account for. These
further principles are inevitably more substantial and to some extent stipulative, and
over the years various non-equivalent developments have been put forward. A thor-
ough discussion can be found in [22] and [60]. Here we only mention some sys-
tems which are particularly relevant for the following sections, all of which played a
significant role in traditional philosophical discussion as well as in recent develop-
ments in AI.
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Generally speaking, these systems may be viewed as resulting from M  by
adding principles asserting the (conditional) existence of certain mereological items
given the existence of other items. Thus, the first system embodies the idea that
whenever an object is not part of another, there is a third object which is part of the
first but not of the second. The second system embodies the intuition that the do-
main be closed—on certain conditions—under the operations of mereological sum,
product, and difference. And the third system—corresponding to the most common
system in the literature—is obtained by strengthening this intuition so as to allow for
closure under infinitary operations.

DEFINITION 2. The theory of Extensional Mereology [EM] is the extension of M
obtained by adding the “Supplementation Axiom”:

(P4) ¬Pxy → ∃z(Pzx  ∧ ¬Ozy).

(P4) is sometimes called “strong” supplementation, to distinguish it from the weaker
supplementation principle to the effect that if an individual has a proper part, it has
more than one. It is easily seen that this is implied by (P4):

(12) EM  |–  PPxy → ∃z(PPzy  ∧ ¬Ozx)

although the converse does not hold: a countermodel is given by two objects which
have exactly the same proper parts. In fact, the exclusion of such models is what
justifies the term “extensionality” in the present context: besides (9) we have

(13) EM  |–  ∃zPPzx  ∧ ∀z(PPzx  → PPzy) → Pxy,

and therefore

(14) EM  |–  ∃zPPzx  ∧ ∀z(PPzx  ↔ PPzy) → x=y,

i.e., no two distinct objects can share the same proper parts. Here (14) is the mereo-
logical counterpart of the familiar set-theoretic extensionality principle, as it reflects
the view that an object is exhaustively defined by its constituent parts (just as a class
is exhaustively defined by its constituent elements). This principle obviously fails in
intensional contexts (see again [60] for discussion and overview), but it has been
assumed in almost every tenseless, non-modal mereological theory put forward in
the literature—except for some of the mereotopological systems which incorporate
the topological option discussed below in Section 5.
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DEFINITION 3. The theory of Closed (Extensional) Mereology [C (E)M] is the ex-
tension of (E)M  obtained by adding the following axioms:

(P5) Uxy → ∃z∀w(Owz ↔ (Owx ∨ Owy)),
(P6) Oxy → ∃z∀w(Pwz ↔ (Pwx ∧ Pwy)),
(P7) ∃z(Pzx  ∧ ¬Ozy) → ∃z∀w(Pwz ↔ (Pwx ∧ ¬Owy)).

Note that in the presence of (P4), the entities whose conditional existence is asserted
by (P5)–(P7) are unique by (14). Thus, if the language has a description operator
‘ι’, CEM  supports the following definitions:

(15) x+y =df ιz∀w(Owz ↔ (Owx ∨ Owy)) (sum)
(16) x×y =df ιz∀w(Pwz ↔ (Pwx ∧ Pwy)) (product)
(17) x–y =df ιz∀w(Pwz ↔ (Pwx ∧ ¬Owy)) (difference)

(Here ‘ι’ may be assumed as part of the logical vocabulary or defined contextually à
la Russell [57]:

(18) ψ[ιxφ] =df ∃y(∀x(φ ↔ x=y) ∧ ψ[y])

The two options are not equivalent, but I shall avoid unnecessary complications
[62].) (P5)–(P7) can then be rephrased more perspicuously as:

(P5') Uxy → ∃z(z=x+y)
(P6') Oxy → ∃z(z=x×y)
(P7') ∃z(Pzx  ∧ ¬Ozy) → ∃z(z=x–y).

C (E)M  is somewhat more controversial than the weaker (E)M , since it involves an
increase in the number of entities admitted in a mereological domain. (One could ar-
gue that the increase is only apparent: for instance, a sum is, in a sense, nothing
over and above the things that compose it [39]; likewise, a product adds nothing.
But formally there is no question that a C (E)M  model is more densely populated
than an (E)M  model.) On the other hand, the algebraic neatness allowed by (P5) is
not to be undervalued, and it makes C (E)M  rather attractive particularly if one’s
purpose is to do without set theory.

In many versions, C (E)M  also involves an axiom to the effect that the uni-
verse is bounded above, i.e., there is something of which everything is part:

(19) ∃z∀x(Pxz).

In the presence of extensionality, such an object is of course unique, and this makes
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it possible in CEM to define an operator associating all (non-universal) objects with
their complement.

(20) U =df ιz∀x(Pxz) (universe)
(21) ~x =df U–x (complement)

This makes the algebraic structure of CEM  even neater, since it guarantees that any
two objects have a sum. (The presence of (19) trivializes the underlap relation ‘U’.)
Sometimes, however, this has been disputed on intuitive grounds, the standard ob-
jection being that unrestricted (P5) may have counter-intuitive instances when x and
y are scattered or otherwise ill-assorted entities, such as two distinct cats, or this
printed page and the topmost stone of the Empire State Building (see the classical
criticism in [42]). We shall come back to this below. On the other hand, note that
only a few authors have gone so far as to postulate the existence of a null individual
which is part of everything:

(22) ∃z∀x(Pzx)

(An exception is [43]; see also [9, 10] for a theory with several null individuals.)
For this reason, the existence of a product or a difference is not always guaranteed,
and (P6)–(P7) need be in conditional form. Likewise, the complement operator will
not be defined for U.

We can also add infinitary closure conditions, allowing for instance for the
possibility of summing arbitrary non-empty sets of objects (which in turn implies
the possibility of making the product of arbitrary sets of overlapping objects: the
product of all members of a class A is just the sum of all those things that are part of
every member of A). This is not immediately obvious if we want to avoid com-
mitment to classes and stick to an ordinary first-order theory. As a matter of fact
fact, in some classical systems such as [68] or [37], the formulation of these
conditions does involve explicit reference to classes. On the other hand, we can
avoid  such reference by relying on axiom schemes that involve only predicates or
open formulas. Specifically, we can say that for every satisfied property or condi-
tion φ there is an entity consisting of all those things that satisfy φ. Since an ordinary
first-order language has a denumerable supply of predicates or formulas, at most de-
numerably many classes (in any given domain) can be specified in this way. But this
limitation is of course negligible if we are inclined to deny that classes exist except
as nomina. We thus arrive at what has come to be known as Classical or General
Mereology.
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DEFINITION 4.  The theory of General (Extensional) Mereology [G(E)M] is the ex-
tension of (E)M obtained by adding the “Fusion Axiom”:

(P8) ∃xφ → ∃z∀y (Oyz  ↔ ∃x (φ ∧ Oyx)).

It is immediately verified that G(E)M  is actually an extension of C (E)M , i.e.,
(P5)–(P7) (and (14)) follow from (P8). Moreover, if we have extensionality, then
again we have that at most one entity can satisfy the consequent of (P8). Thus, in
GEM we can define general sums and products:

(23) σxφ =df ιz∀y (Oyz  ↔ ∃x (φ ∧ Oyx))
(24) πxφ =df σz ∀x(φ → Pzx)

(P8) then becomes

(P8') ∃xφ → ∃z(z=σxφ)

which implies

(25) ∃xφ ∧ ∃y∀x(φ → Pyx) → ∃z(z=πxφ)

and we have the following definitional equivalences (when defined):

(26) GEM |–  x+y = σz (Pzx  ∨ Pzy)
(27) GEM |–  x×y = σz (Pzx  ∧ Pzy)
(28) GEM |–  x–y = σz (Pzx  ∧ ¬Ozy)
(29) GEM |–  ~x = σz (¬Ozx)
(30) GEM |–  U = σz (Pzz)

(Compare these with the standard definitions of the corresponding set-theoretic no-
tions, with λ-abstraction in place of fusion.) Moreover, it should be noted that
GEM is slightly redundant, in that (P4) can be replaced by the weaker supplemen-
tation principle mentioned in (12). We have in fact

(31) M  |– (PPxy → ∃z(PPzy  ∧ ¬Ozx))  → (P8) → (P4).

This gives us the full strength of GEM. Various other equivalent formulations are
also available, using different primitives and/or different sets of axioms. In the fol-
lowing, however, we shall stick to the above formulation for ease of comparison.

Before concluding, we consider the possibility of further strengthening a
mereological theory by pronouncing on the question of whether or not there are
atoms, and whether everything is made up of atoms.
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DEFINITION 7.  Let X  be any mereological theory. The Atomistic variant of X
[labelled AX] is the extension of X  obtained by adding the axiom:

(P9) ∀x∃y(Pyx ∧ ¬∃zPPzy).

The Atomless variant of X  [labelled A–  X] is the extension of X  obtained by adding
the axiom:

(P10) ∀x∃yPPyx.

Obviously, (P9) and (P10) are mutually inconsistent. On the other hand, it is easy to
verify that any mereological theory considered here (M , EM , CM , CEM , GM,

AGEM

GM

AGM

ACEM

CM

ACM

AEM

M

AM

AGM
–

ACM
–

AM
–

GEM

CEM

EM

AGEM
–

ACEM
–

AEM
–

(P1) Pxx M (P6) Oyx → ∃z∀w(Pwz  ↔ (Pwx ∧ Pwy)) CM
(P2) Pxy ∧ Pyx → x=y M (P7) ∃z(Pzx ∧ ¬Ozy) → ∃z∀w(Pwz  ↔ (Pwx ∧ ¬Owy)) CM
(P3) Pxy ∧ Pyz → Pxz M (P8) ∃xφ → ∃z∀y (Oyz ↔ ∃x (φ ∧ Oyx)) GM
(P4) ¬Pxy → ∃z(Pzx ∧ ¬Ozy) EM (P9) ∀x∃y(Pyx ∧ ¬∃zPPzy) AM
(P5) Uxy → ∃z∀w(Owz  ↔ (Owx ∨ Owy)) CM (P10) ∀x∃yPPyx A–  M

Figure 2: Hess diagram of the basic mereological systems (the inclusion relation goes uphill); in
the listing, the characteristic axioms are matched with the lowest theory in which they appear.  
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GEM) is compatible with either position, and can therefore be made into an atomic
or an atomless system as the case may be. Indeed, any finite model of GEM (and a
fortiori of its weaker subtheories) must be atomistic, so an atomless model must
have infinite cardinality. Moreover, atomistic mereologies admit of significant
simplifications in the remaining axioms. For instance, AEM can be simplified by
replacing (P4) and (P9) by the following:

(32) ∀z(¬∃wPPwz ∧ Pzx  → Pzy) → Pxy,

whence it is apparent that an atomistic extensional mereology is strongly extensional:
things built up from the same atoms are identical. For more discussion on this and
related aspects, see [22] and references therein.

PROPOSITION 1 (Tarski [69]).  Every model of (A)GEM is isomorphic to an
(atomic) complete quasi-Boolean algebra (= Boolean algebra with the zero element
removed). A model of A–  GEM is given by a complete quasi-Boolean algebra on the
set of regular open subsets of a Euclidean Space.

3. THE NEED FOR TOPOLOGY

We said that mereology can be credited a fundamental role regardless of whether we
take the entire universe to be describable in mereological terms. Even so, the ques-
tion arises of how far we can go with it—how much of the universe can be grasped
by means of purely mereological notions. And one of the most interesting develop-
ments of recent years stems precisely from a partly negative answer to this question.
A purely mereological outlook is just too tight, and one need go beyond the bounds
of a pure theory of parthood to come out with a true theory of parts and wholes.
That is, mereological reasoning by itself cannot do justice to the notion of a whole (a
one-piece, self-connected whole, such as a stone or a whistle, as opposed to a scat-
tered entity made up of several disconnected parts, such as a broken glass, an
archipelago, or the sum of two distinct cats). Parthood is a relational concept,
wholeness a global property, and the latter just runs afoul of the former.

This is apparent if we consider GEM. For every whole there is a set of
(possibly potential) parts; for every specifiable set of parts (i.e., arbitrary objects)
there is in principle a complete whole, viz. its mereological sum, or fusion. But
there is no way, within the theory, to draw a distinction between “good” and “bad”
wholes; there is no way to tell an integral whole from a scattered sum of disparate



PARTS, WHOLES, AND PART-WHOLE RELATIONS

11

entities by reasoning exclusively in terms of parthood. Nor is this a shortcoming of
the compositional strength of GEM (or of CEM , for that matter), i.e., of the lack
of significant restrictions on the generating power of the sum and fusion operators.
The point is precisely that it is not possible, mereologically, to single out the relevant
restrictions. (In CEM  the existence of a sum x+y is conditional to the existence of
an object z containing both x and y. But nothing says what properties this object
must have.) In fact, one might even argue that it is not a task of mereology to spec-
ify which wholes are to count as “natural”, just as ascertaining which sentences are
actually “true” is not a task of semantics but an empirical issue. The real source of
difficulty is different. It is that the question of what constitutes a natural whole can-
not even be formulated in mereological terms. As soon as we allow for the possibil-
ity of scattered entities we lose every chance to discriminate them from integral
wholes; yet we cannot just keep the latter without some means of discriminating
them from the former.

As suggested elsewhere [72] (see also [73, 13]), Whitehead’s early attempts to
characterize his ontology of events provide a good exemplification of this mereolog-
ical dilemma. Whitehead’s systems [77,  78] do not satisfy (P5) (they are therefore
weaker than CEM), for the intended domain is not to include scattered wholes. For
Whitehead, a necessary condition for two events to have a sum is that they be at
least “joined” to each other, i.e., connected (be they discrete or not). This is defined
thus:

(33) Jxy = df ∃z(Ozx  ∧ Ozy  ∧ ∀w(Pwz → Owx ∨ Owy))

But it is immediately verified that this definition falls short of capturing the intended
relation. For nothing guarantees that the item z overlaying two “joined” items x and
y be itself a one-piece entity. (Think of two separate discs overlapping the scattered
sum of their facing halves.)

These considerations apply mutatis mutandis to other attempts to subsume
topological connectedness within a bare mereological framework (see e.g. [8, 46]).
Nor is this exclusively an ontological concern. These limits show up in any attempt
to account for very basic spatio-temporal relations, such as the relationship between
an object and its surface, or the relation of continuity between two successive
events, or the relation of something being inside or around something else. All of
these—and many others indeed—are relations that any theory concerned with spa-
tio-temporal entities should supply and which cannot, however, be defined directly
in terms of plain mereological primitives.
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It is here that topology comes into the picture. In recent literature, this need to
overcome the bounds of mereology has been handled in various ways, but most
proposals stem from a common intuition: overlooking the microscopic discontinuity
of matter, the question of what characterizes objects that are all of a piece requires
topological analysis. Regardless of what specific principles we assume, a mereolog-
ical account must be supplemented with a topological machinery of some sort.

To facilitate comparisons, let us expand our language by adding a second dis-
tinguished predicate constant, ‘C’, to be understood intuitively as the relation of
topological connection (the “join” relation that Whitehead was seeking to capture
with (33)). The question of how mereology can actually be expanded to a richer
part–whole theory may then be addressed by investigating how a P-based mereolog-
ical system of the sort outlined above can be made to interact with a C-based topo-
logical system. Again, we may distinguish for this purpose “lexical” from substan-
tial postulates for ‘C’, regarding the former as embodying a set of minimal prereq-
uisites that any system purporting to explicate the meaning of the concept of
‘connection’ must satisfy. Usually, these include the twofold requirement that ‘C’
be at least reflexive and symmetric, and that it be monotonic with respect to ‘P’
(whatever is connected to a part is also connected to the whole). We shall call this
minimal theory Ground Topology, in analogy with the terminology of Definition 1.

DEFINITION 5. Ground Topology [T] is the theory defined by the following proper
axioms for the Connection predicate, ‘C’:

(C1) Cxx;
(C2) Cxy → Cyx.
(C3) Pxy → ∀z(Czx  → Czy).

It is understood that ‘C’ may on some interpretations collapse directly onto ‘O’.
However, on the intended interpretation ‘C’ may also apply in case of external con-
nection—connection without sharing of parts. Hence ‘O’ will generally be a proper
subrelation of ‘C’, which means that the variety of distinct relations available in the
extended language is potentially much richer. In particular, we may set:

(34) ECxy =df Cxy ∧ ¬Oxy (External Connection)
(35) TPxy =df Pxy ∧ ∃z(ECzx ∧ ECzy) (Tangential Part)
(36) IPxy =df Pxy ∧ ¬TPxy (Internal Part)

As the patterns of Figure 3 indicate, these relations are distinct from the purely
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mereological relations introduced in (2)–(8). (Tangential or internal proper parts,
TPP and IPP, are defined in the obvious way.)
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x y x y
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Cxy

Uxy
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PPxy
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Figure 3: The seven basic patterns of the connection relationship.

Moreover, one can introduce further mereotopological relations along the following
lines:

(37) Exy =df ∀z (Czx  → Czy) (Enclosure)
(38) IExy =df ∃z (IPzy  ∧ Exz) (Internal Enclosure)
(39) TExy =df ∃z (TPzy  ∧ Exz) (Tangential Enclosure)
(40) Sxy =df ∃z (Ezx  ∧ Ezy) (Superposition)
(41) SXxy =df Sxy ∧ ¬Exy (SuperCrossing)
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(42) PSxy =df SXxy ∧ SXyx (Proper Superposition)
(43) Ixy =df Exy ∧ Eyx (Coincidence)
(44) Axy =df Cxy ∧ ¬Sxy (Abutting)

Unless the converse of (C3) is also assumed, these are all different from the rela-
tions of Figure 3 [71]. Intuitively, they correspond to the situations where the re-
gions occupied by x and y stand in the corresponding Figure-3-relations obtained by
replacing ‘E’ with ‘P’ throughout. (The relevant difference is captured by the rela-
tions defined by the scheme:

(45) DR xy =df R xy ∧ ¬Oxy

(‘D’ for ‘Disjoint’), where R is any relation introduced in (37)–(43). Compare this
with (34).) Of course, it is a matter of ontology whether there are any entities that
can share (al least partially) the same region without sharing any parts. For instance,
co-localization seems to be a sufficient condition for identity in the case of material
objects. But other entities seem to evade the restriction. Two distinct events can be
perfectly spatio-temporally co-located [20]. Or, to use a different terminology,
events do not occupy the spatio-temporal region at which they are located [14], and
can therefore share it with other things. The same is true of “immaterial entities”
such as holes or shadows—if we accept them into our ontology [12].

One can also introduce various “limit” relations that exploit further the distinc-
tion between, say, interior and tangential parts. For instance, one can define bound-
ary parts as those tangential parts that include no interior parts:

(46) BPxy =df TPxy ∧ ¬∃z(Pzx  ∧ IPzy)

However, this and similar relations are somewhat more problematic. For one thing,
their actual meaning in a model may vary considerably depending on the actual com-
position of the model’s domain. (For instance, in a domain in which a sphere has
only two proper parts, say, the right and left halves, each part counts as a boundary
part of the sphere.) Secondly, various authors explicitly reject boundary elements.
Along with the exact nature of the interaction between the two basic predicates ‘P’
and ‘C’, the existence of such elements is indeed a major source of disagreement
among the various mereotopological systems put forward in the literature (see [74]
for a critical discussion). The following sections will illustrate some alternative op-
tions.
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4. COMBINING MEREOLOGY AND TOPOLOGY: THE FIRST STRATEGY

Once the need for supplementing mereological notions with topological notions is
recognized, there are essentially three main strategies one can pursue. The first is, in
a sense, the obvious one, and is implicit in the exemplifications of the previous sec-
tion: if topology cannot be made to fit merelogy, then we may just add it to a mereo-
logical basis. From this point of view, mereology can be seen as the ground theory
on which theories of greater and greater complexity (including topology as well as,
say, morphology or kinematics) can be built by supplying the necessary notions and
principles. The second strategy is more radical and exploits the idea that mereology
(as a theory of parthood) is indeed a subtheory of topology (theory of wholes). That
is, if topology eludes the bounds of mereology, as Whitehead’s dilemma illustrates,
one may try and turn things around: start from topology right away and define
mereological notions in terms of topological primitives. From this point of view,
just as mereology can be seen as a generalisation of the even more fundamental the-
ory of identity (parthood, overlapping, and even fusion subsuming singular identity
as a definable special case), likewise topology could be viewed as a generalisation of
mereology, where the relation of joining or connection takes over parthood and
overlapping as special cases. Finally, we shall also consider a third strategy, which
is a sort of vindication of mereology building on its formal generality: on this view,
topology may after all be viewed a subtheory of mereology, viz. as a domain-
specific subtheory, connection and kindred notions being accounted for in terms of
part-relations among entities of a specified sort, e.g., spatial regions. (See [72] for
more preliminary material on this taxonomy of strategies.) In this section we shall
begin with some remarks on the first strategy.

The minimalistic account is straightforward from the foregoing remarks: we
obtain a ground mereotopological theory of the first type simply by combining the
“lexical” axioms of Ground Mereology with those of Ground Topology.

DEFINITION 6.  Ground Mereotopology is the theory MT defined by the M-axioms
(P1)–(P3) together with the T-axioms (C1)–(C3).

(This set of axioms is actually redundant, and can be simplified by replacing (C2)–
(C3) with the single axiom

(47) Pxy → ∀z (Cxz  → Czy).
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We keep (C1)–(C3) for greater perspicuity and ease of reference.) This is the theory
presupposed by definitions (34) through (45), though it is hardly of any interest by
itself. More generally, we may consider the result of adding T to stronger mereolog-
ical bases than M .

DEFINITION 7.  Let X  be any mereological theory. The Ground Mereotopology in-
duced by X  [labelled XT] is the extension of X  obtained by adding the T-axioms
(C1)–(C3).

For example, a version of CEMT  can be found in [12]. It distinguishes all defined
relations of Section 3, and it supports a characterization of wholeness patterned after
the customary topological definition, modulo a mereological rather than set-theoreti-
cal ordering: a self-connected whole is an object that cannot be split into two or more
disconnected parts:

(48) SCx =df ∀x∀z (x=y+z → Cyz).

That is: something x is self-connected just in case one can go on a continuous path
from any one part of x to any other without ever leaving the x itself. (Note that one
could take ‘SC’ as a primitive, and define ‘C’ by the obvious emendment of
Whitehead’s definition for ‘J’, as per the following equivalence:

(49) CEMT  |–  Cxy ↔ ∃z(SCz ∧ Ozx  ∧ Ozy  ∧ ∀w(Pwz → Owx ∨ Owy))

See [14] for a suggestion along these lines.)
A more typical case is obtained by taking X  = GEM. This theory has been con-

sidered for the first time in [30], and has been used by various authors in some form
or another (see e.g. [71] for an explicit formulation). Using the full strength of the
fusion axiom, in GEMT it is possible to integrate the quasi-Boolean mereological
operators of sum, product, etc. with a variety of quasi-topological operators:

(50) ix =df σzIPzx (interior)
(51) ex =df i(~x) (exterior)
(52) cx =df ~(ex) (closure)
(53) bx =df ~(ix+ex) (boundary)

(Like the operators in (15)–(17) and (21), these operators will be partially defined
unless we assume the existence of a null individual (22).) These operators are rather
well-behaved, and allow one to capture a number of important mereotopological no-
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tions. For instance, reference to the interiors makes it possible to refine the notion of
wholeness introduced in (48). As it is, in fact, the predicate ‘SC’ is still too general
to capture the desired notion of an integral whole—a one-piece entity. On the one
hand, one needs a stronger notion of connectedness, ruling out entities made up of
pieces that are connected only externally (in the sense of (34)), such as the sum of
two balls barely touching each other. In GEMT, we may do so by requiring that
also the entity’s interior be self-connected:

(54) SSCx = df SCx ∧ SCix

On the other hand, one needs some means for expressing the intuitive distinction
between self-connected parts (such as the bottom half of a ball) and self-connected
wholes (the entire ball). This can be done in GEMT by singling out those entities
that are maximally strongly self-connected:

(55) MSSCx = df x=σy(Pxy ∧ SSCy)

or, more generally, by singling out entities that are maximally strongly self-con-
nected relative to some property or condition φ:

(56) φ-MSSCx = df φ[x] ∧ x=σy(Pxy ∧ φ[z] ∧ SSCy).

These and similar facts make GEMT a mereotopological theory particularly interest-
ing for the purpose of ontological investigations, although its topological structure is
still very simple. The intended picture is given by the following [26].

PROPOSITION 2 (Grzegorczyk [30]). Let A be the class of non-empty regular ele-
ments of a Hausdorff topology, and define x  R  y iff x   ∩ y–  ≠∅ for all x,y∈A. Then
the structure (A, ⊆,  R) is a model of GEMT.

At this point, we can get closer to a standard topological structure in various ways
by strengthening the set of relevant axioms as desired. For instance, let us introduce
the usual distinction between open and closed individuals:

(57) Opx =df x=ix (Open)
(58) Clx =df x=cx (Closed)

Then we obtain a structure corresponding the ordinary topological spaces (modulo a
mereological rather than set-theoretical basis) by imposing (the analogues of) the
usual closure conditions.
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DEFINITION 8.  The theory of General Extensional Mereotopology with Closure
conditions [GEMTC] is the extension of GEMT obtained by adding the following
axioms:

(C4) Clx ∧ Cly → Cl(x+y)
(C5) ∀x(φ → Clx) → (z=πxφ → Clz)

or, equivalently,

(C4') Opx ∧ Opy → (z=x×y → Opz)
(C5') ∀x(φ → Opx) → Op(σxφ).

(In (C5) and (C4'), the consequent is in conditional form due to the lack of a null
individual). The intuitive strength of this theory is illustrated by the following con-
sequences, which correspond to (the mereologized version of) the standard Ku-
ratowski axioms for topological closure along with their analogues for the interior
and boundary operators:

(59) GEMTC  |–  Px(cx)
(60) GEMTC  |–  c(cx)  =  cx
(61) GEMTC  |–  c(x+y) = cx  + cy
(62) GEMTC  |–  P(ix)x
(63) GEMTC  |–  i(ix)  =  ix
(64) GEMTC  |–  i(x×y) = ix  ×  iy
(65) GEMTC  |–  bx  = b(~x)
(66) GEMTC  |–  b(bx) = bx
(67) GEMTC  |–  b(x×y) + b(x+y) = b(x) + b(y),

(These theorems are to be understood as holding whenever ‘c’, ‘i’, and ‘b’ are
defined for the relevant arguments.) We also have the following, which show in
what sense the interpretation of ‘C’ in GEMTC  is germane to that of standard
topology:

(68) GEMTC  |–  Cxy ↔ Ox(cy) ∨ O(cx)y
(69) GEMTC  |–  ECxy ↔ Ox(by) ∨ O(bx)y

In view of properties such as these, GEMTC  can be considered the archetype of a
mereotopological theory based on the strategy under examination. Theories of this
sort have been proposed by various authors, though often with a different choice of
primitives and/or axiom sets. For instance, [65] gives a version of the theory using
‘IP’ as a primitive; [48, 49,  50] give an equivalent formulation based on ‘c’ as a
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primitive and (60)–(61) as axioms. A version of the same theory based on the primi-
tive ‘boundary’ is found in [51]. A slightly weaker formulation, based on ‘IP’, can
also be found in [70], though this theory turns out to be defective in various re-
spects. (In fact, it should be mentioned that the strategy of relying on the intuitive
notion of an object being wholly within  another goes as far back as [47]. Likewise,
in the temporal realm, [36] outlines a Leś niewskian theory of time based on the
relation of an interval being wholly earlier than another. The same approach
underlies much linguistics-oriented work on time, tense, and aspect: see inter alia
[4, 5,  33,  34,   35,  40].)

It is of course also possible to consider the hypothesis of combining topology
with either atomistic or atomless mereologies. In particular, one may consider
strengthening the assumption of mereological atomlessness with the requirement that
everything have an interior proper part. This would give us a mereotopology in
which there are no boundary elements.

DEFINITION 9.  Let X  be any Mereotopological theory. The Boundaryless variant of
X  [labelled B–  X] is the extension of A–  X  obtained by replacing (P10) with the
axiom:

(C6) ∀x∃yIPPyx.

Obviously, X  must not be atomistic, and B–  X  can only have infinite models. Also,
in view of (68)–(69), X  must be weaker than GEMTC , on pain of inconsistency.
More importantly, it is easily verified that B–  GEMT will not be consistent unless
we identify open and closed entities, for otherwise (C6) would contradict the
supplementation axiom:

(70) GEMT |–  Opx ∧ y=cx → ¬∃zIPz(y–x).

So boundaryless theories are not easily accommodated within this framework. In
fact, it should be stressed that most theories mentioned here (except [7]) are commit-
ted to the existence of boundary elements. (Some authors [30, 33] have gone as far
as construing boundaries as higher-order entities, in the spirit of the boundaryless
theories discussed in the next section, but this is somewhat paradoxical if the theory
allows for boundary individuals.) On the other hand, not much work has been done
on the well-known intricacies stemming from the inclusion of such entities in the
domain [74]. The issue is taken up in [63], where the point is made that a major
feature of GEMTC  lies precisely in the potential treatment of boundaries that it can
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deliver. In particular, the suggestion is made that GEMTC be further strengthened
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AXT
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BXTC
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(C1) Cxx T (C4) Clx ∧ Cly → Cl(x+y) XTC
(C2) Cxy → Cyx T (C5) ∀x(φ → Clx) → (z=πxφ → Clz) XTC
(C3) Pxy → ∀z(Czx → Czy) T (C6) ∀x∃yIPPyx B–  XT

Figure 4: Mereotopological theories of the first type induced by a mereological theory X. (For per-
spicuity, it is assumed that X is neutral with respect to atomism; also, note that in the text the clo-
sure conditions defining XTC are given only for X  = GEM).

by adding suitable principles reflecting e.g. the Aristotelian-Brentanian intuition that
boundaries are parasitic entities, i.e., can only exist as boundaries of some-
thing (contrary to the set-theoretic conception of boundaries as ordinary independent
entities). The formulation of such principles is in itself a rather difficult issue, as it
would seem to involve an intricate interplay of mereotopological and modal notions.
[65] suggests a minimal extensional formulation along the following lines

(71) Bxy → ∃z∃w(BPxz  ∧ IPwz),

where ‘B’ is the boundary relation defined in the obvious way:

(72) Bxy =df Px(by).

We refer the reader to [66, 67,  74] and to Smith’s contribution to this issue for fur-
ther developments of this suggestion. A different approach is indirectly suggested
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by the general strategy under examination, and consists in expanding the language
by introducing a third distinguished predicate, say ‘D’ for dependence. For instance,
[25] suggests the following set of purely extensional axioms for ‘D’:

(73) Pxy → Dyx
(74) Dxy ∧ Dyz  → Dxz
(75) ∃y(Dxy ∧ ∀z(Dxz  → Pzy)).

We can then address the dependent nature of boundaries by supplementing the the-
ory with a specific principle relating the topological part to the theory of dependence:

(76) Bxy → Dxy.

Although more involved, such an account is very much in the spirit of the general
strategy under examination (start with mereology, and then add topology and other
theory fragments). Moreover, it can be extended to consider other relations of onto-
logical dependency (e.g., the dependence of a hole on the surrounding object [12]).
We see this as a rewarding subject for further exploration.

5. SECOND STRATEGY: TOPOLOGY AS A BASIS FOR MEREOLOGY

We consider now the second way to bridge the gap between merelogy and topology.
As mentioned above, this strategy exploits the suggestion that topology is truly a
more fundamental and more general framework subsuming mereology in its en-
tirety, at least relative to certain domains. This view can be traced back to [21] and
was eventually taken over by Whitehead himself in the final version of his theory in
[79], where all notions are explained in terms of the ‘C’ predicate. In particular,
definability of parthood is obtained by assuming also the converse of the basic
mereotopological principle (C3) linking ‘P’ to ‘C’. This gives us the following basic
characterization of this strategy.

DEFINITION 10.  Strong Mereotopology [SMT] is the extension of MT obtained by
adding the following axiom:

(C7) ∀z(Czx  → Czy) → Pxy.

This, in turn, can be simplified by observing that (P1) and (P3) are now derivable
from the other axioms. So in the end SMT  is tantamount to the theory defined by
(C1) and (C2) along with
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(P2') ∀z(Czx  ↔ Czy) → x=y,

which corresponds to (P2) with ‘P’ defined as indicated:

(77) Pxy =df ∀z(Czx  → Czy).

(This is actually the customary formulation of SMT  found in the literature since
[15].)

This scarcity of primitives and axioms is admittedly a major attractve feature of
SMT , though one should not overestimate it. In fact, it is also possible to have a
mereotopology of the first type based on a single primitive. For instance, in [72, 73]
it is suggested to rely on the ternary relation “x and y are connected parts of z”.
Indicating this relation by ‘CP’, one can easily define ‘P’ and ‘C’,

(78) Pxy =df ∃zCPxzy
(79) Cxy =df ∃zCPxyz,

and then go on to develop a mereotopological theory of the first type based on the
relative independence of these two predicates. (Note that (78) only presupposes con-
nection to be reflexive, whereas (79) assumes every pair of connected entities to
have a sum—two perfectly uncontroversial presuppositions.)

So the distinguishing feature of this second strategy is not its formal econ-
omy—its relying on a single primitive. It is, rather, conceptual economy: the notion
of parthood is fully subsumed under the notion of connection, that is, in the end,
under the notion of wholeness. And the theory of parthood is, strictly speaking, a
subtheory of the theory of wholeness. On this approach, the limits of mereology are
overcome by turning the problem upside down, as it were: topology can deliver the
full story about parts and wholes.

There is some cost too, though. For an immediate consequence of (77) is the
complete collapse of all the relations introduced in (37)–(43): enclosure becomes
parthood, and everything else goes. With the notation of (45):

(80) SMT  |–  ¬DR xy for R ∈{E, IE, TE, S, SX, PS, I}

This is straightforward if spatio-temporal regions are the only entities in the domain.
If, however, mereotopology is to apply to real world objects and events (without
identifying them with their spatio-temporal co-ordinates), then the reduction is more
problematic. As we saw in the previous section, the possibility that things be co-lo-
cated without there being any sharing of parts is in principle open, depending on the
ontology admitted by the theory, and reasoning exclusively in terms of regions may
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therefore be inadequate for the general case. We can say that the mereotopology of
things and events supervenes on that of their spatiotemporal regions. But then we
need at least a theory of localization to account for the correspondence, and the initial
advantage of doing without parthood as an independent concept seems lost. (See
[13,  14,  72] for a more detailed formulation of this point.)

We can of course generalize Definition 10 by considering strong extensions,
not of MT, but of richer mereotopological frameworks.

DEFINITION 11.  Let X  be any mereological theory. The Strong Mereotopology in-
duced by X  [labelled SXT] is the extension of XT obtained by adding axiom (C7).
The corresponding Strong Mereotopology with closure conditions [SXTC] is ob-
tained by adding the closure axioms (C4)–(C5) (or, equivalently, (C4')–(C5')). The
corresponding Boundaryless variant [B–  SXT (C )] is obtained by adding axiom
(C6) (or by substituting it for (P9) or (P10), if one of these is part of X).

This gives a better picture of the power of the reduction. It should be noted, how-
ever, that most (if not all) theories based on the exploitation of (C7) do not define
the quasi-Boolean mereological operations in terms of ‘O’ (eventually introduced via
(3) with ‘P’ understood in terms of ‘C’). Rather, it is standard practice to make use
of their C-based counterparts. In the presence of boundaries, this marks a relevant
difference with respect to the ‘+’ and ‘–’ operators:

(15') x+'y =df ιz∀w(Cwz ↔ (Cwx ∨ Cwy))
(17') x– ' y =df ιz∀w(Pwz ↔ (Pwx ∧ ¬Cwy)).

For instance, if x is closed and y is the mereological complement of x, then x+y=U
but x+'y=U–bx. Likewise, U–x=~x but U–'x=~x–bx. More generally, define the
C-based operator of general sum (fusion) in this spirit:

(23') σ' xφ =df ιz∀y (Cyz  ↔ ∃x (φ ∧ Cxy)).

Then all quasi-Boolean operators, and consequently all quasi-topological operators
of the sort introduced in (50)–(53), are typically re-defined using (23') in place of
(23). In the following, we shall use priming to indicate a theory exploiting such a
way of proceding (so that, for instance, SCMT'  will be the strong mereotopology
induced by CM  modulo a systematic replacement of σ by σ'). A thorough compari-
son of these theories with their mereology-based counterparts would be very useful,
and represents an open issue in the literature. Here we confine ourselves to pointing
out two important consequences of the fully topological approach based on (23'):
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(81) SGMT'  |–  ¬Cx(~x)
(82) SGMT'  |–  ¬SCU

Thus, if the universe is to be connected, one must either change the definition of
complement, ‘~’, or the very notion of self-connectedness, ‘SC’ (or else work with
a weaker theory in which the universe or the closure operators are not definable).
We shall see that these are in fact the two main lines of development pursued by au-
thors working from the perspective of this strategy. First, however, a couple of
facts concerning the algebraic structure of the theories under consideration.

PROPOSITION 3a (Biacino & Gerla [6]). Every model of SGMT'  corresponds to a
complete quasi-orthocomplemented lattice (= orthocomplemented lattice with the
zero element removed) via the ordering induced by the definition of ‘P’.

PROPOSITION 3b (Asher & Vieu [1]). B–  SCMTC'  is semantically consistent and
complete (with respect to a well-defined class of quasi-orthocomplemented lattices
of regular open subsets of a topological space).

We should also record that most theories developed in conformity with the strategy
under examination (with the only apparent exception of [52]) are boundaryless.
Whitehead [79], and after him Clarke [15, 16] and various subsequent theories,
explicitly suggested interpreting the individual variables as ranging over spatio-tem-
poral regions, and ‘C’ as the relation of sharing a common point. It is for this reason
that their theory allows one to distinguish ‘C’ from ‘O’. Since points are not re-
gions, connection does not imply overlapping, and regions may be externally con-
nected. This marks an interesting difference from the boundary-based theories con-
sidered in the previous section: whereas in a theory such as GEMTC  ‘EC’ is ex-
plained in terms of overlapping of a common boundary, as per (69), here the expla-
nation is left open, for boundaries are simply not included in the domain. This dif-
ference, in turn, has at least one important consequence, namely the violation of the
supplementation principle (P4) (even in its weak form (12)), and consequently of
mereological extensionality. Although the systems under consideration have no
room for boundaries, they do have room for the standard topological distinction
between open and closed entities (definitions (57)–(58) still apply). But as we saw
in (70), this distinction is inconsistent with the joint assumption of boundaryless-
ness (C6) and mereological extensionality (P4). As a result, Proposition 3b cannot
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be strengthened by extending B–  SCMTC'  to B–  SCEMTC' :

(83) B–  SCMT (C )'  |–  Opx ∧ y=cx → ¬∃z(Pzy  ∧ ¬Ozx).

Thus, an open region is always a proper part of its own closure, but there is no
mereological difference between the two—a feature that some authors have found
philosophically unpalatable [60, 74].

On the other hand, Asher & Vieu’s result [1] is in fact stronger that Proposition
3b, since the system which they prove to be consistent and complete is a proper ex-
tension of B–  SCMT'  obtained by adding (C4') along with the following axioms:

(84) ∃x∀z(Czx) (existence of the universe)
(85) ∃y∀z(Czy ↔∃w(IPwx ∧ Cwz)) (existence of interiors)
(86) cU=U (totality of the c operator)
(87) ∃x∃yECxy (external connection)
(88) ∃y(y=nx) (existence of neighborhood)
(89) ∃x∃yWCxy (weak connection)

where ‘n’ is the ‘neighborhood’ operator and ‘WC’ the relation of ‘weak contact’
corresponding to the case of two objects (regions) which, albeit disconnected, are
‘vanishingly close’ to each other:

(90) nx =df ιy(Pxy ∧ Opy ∧ ∀z(Pxz  ∧ Opz → Pyz))
(91) WCxy =df ¬Cxy ∧ Cx(cny).

We shall call this system of B–  SCMTW'  (‘W’ for ‘weak connection’). It is based
on previous work by Vieu et al. [2,  3,  75] mostly motivated by applications to
Natural Language Semantics, and may be taken as a representative of the second
way of dealing with the tension arising from (81)–(82) above (disconnectedness of
the universe). In this system, in fact, the notion of self-connectedness is suitably
weakened:

(48') SCx =df ∀x∀z (x=y+z → C(cy)(cz)).

The other way of dealing with the tension corresponds to the work of Cohn
and his team [18, 52,  54,  55,  56], which has come to be known as the RCC  theory
(Region Connection Calculus). This is simply a version of Clarke’s theory (more
precisely, a version of B–  SCMT'—see [17,  28,  29] for further developments)
motivated by a weaker interpretation of ‘Cxy’ as meaning ‘the topological closures
of regions x and y share a common point’. In a sense, the difference is only appar-
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ent: rather than changing the notion of ‘SC’ by replacing the clause ‘Cyz’ by
‘C(cy)(cz)’, RCC  builds that change directly into the intended interpretation of the
C-relation itself. However, this change carries along several significant conse-
quences, making the departure more substantial than it would seem. In particular,
this shift of interpretation is reflected formally in the abandonment of the quasi-
Boolean operation of complementation used in B–  SCMTW'  and in any system of
the family (B–  )SXT (C )' :

(21') ~x =df ιy∀z(Czy  ↔ ¬Pzx)

in favour of the following weaker variant:

(21") ~x =df ιy∀z((Czy ↔ ¬IPPzx) ∧ (Ozy ↔ ¬Pzx)).

This guarantees that every (non-universal) region be connected with its own com-
plement, in contrast to (81):

(92) RCC  |–  Cx(~x).

But (21") also has the effect of regaining the supplementation axiom (P4), which
becomes provable:

(93) RCC  |–  ¬Pxy → ∃z(Pzx  ∧ ¬Ozy).

So, RCC  is an extension of EM . More generally, in RCC  the distinction between
open and closed regions collapses. This follows from the fact that ‘O’ becomes an
extensional relation:

(94) RCC  |–  ∀z (Ozx  ↔ Ozy) → x=y.

Thus, it is not possible for two items to share exactly the same parts without having
the same relationships in terms of connection, and in the presence of (C6) (the ax-
iom that everything has interior parts) this deprives the open/closed distinction of
any foundation. The authors motivate this change on intuitive grounds: if we map
bodies to closed regions (the regions they occupy), then their complements become
open, which means that if we allow bodies to break up into parts, one part will map
to a closed region, and the other to a semi-open region—a result which the authors
find counterintuitive (and which many other authors regard as a main motivation for
going boundaryless in mereotopology). On the other hand, two consequences of
this move should be recorded. First,  RCC  cannot be weakened by dropping the
requirement of atomlessness. More precisely, we can drop the no-boundary axiom



PARTS, WHOLES, AND PART-WHOLE RELATIONS

28

(C6), but reference to (21") does not support natural models with mereologically
atomic regions. These would have the degenerate property that anything connected
with them would also be connected with their complement, and by (C7) that would
vacuously imply that every atomic region is part of its complement. (Some ways of
dealing with this issue are discussed in [56].) Second, it follows that RCC  cannot
be extended to a general mereotopology supporting infinitary fusions. For in the
presence of (93) and (94), the availability of the fusion axiom (P8') would yield the
following theorem

(95) x = ix = cx.

Since every region is connected with its complement, this would amount to saying
that the fusion of the interior parts of any region is in contact with the complement of
that region; likewise, since (the closure of) any region includes the fusion of the re-
gion’s tangential parts, (95) says that by putting together the interior parts of any
region, one eventually gets all of its tangential parts. Both consequences seem unac-
ceptable. The only way to avoid them is therefore to prevent the definition of the ‘i’
and ‘c’ operators.  

In sum, the real distinguishing feature of RCC  with respect to the systems of
the family (B–  )SXT (C )'  (and their W-variants) is the position relative to the
open/closed distinction—with all that goes with that. And the main distinguishing
feature of all of these systems with respect to the systems discussed in the previous
section (apart from the reduction of mereology to topology via (77)) is the position
relative to the existence of boundary elements—with all that goes with that.

It should be added that the elimination of boundaries from the basic ontology of
a B–  -theory does not rule out the possibility of providing at least an indirect account
of such notions as “point”, “line”, and “surface” in such a way as to do justice to
their customary geometrical properties. Following Whitehead’s original work (but
the idea goes back at least to Lobac̆ evskij [41] and can also be found e.g. in
[44,  69]), this is typically done by construing boundary elements as higher-order en-
tities. For instance, various accounts have been proposed treating points as se-
quences, sets, or even sets of sets of nested regions that “converge” (though not to
an object proper). For a general overview of work in this area, we refer to [26] and
[23] (but see also the treatment in [75]). This approach also has interesting ana-
logues in the temporal realm, where instants are sometimes construed as sets of time
intervals (which in turn are sometimes construed as sets of overlapping events). The
locus classicus is  Russell’s construction in [59], which is echoed e.g. in
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[76,  33,  5].
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(BSXTW')

SXTC'

ASXTC'

ASXT'

ASXTC'
–

ASXT'
–

SXT'

BSXTC'
–

BSXT'
–

(RCC)

–

XT

(C7)      ∀z(Czx → Czy) → Pxy    SXT

Figure 5: Basic mereotopological theories of the second type exploiting a mereological theory X. In
the text, B

–
 SXTW' is discussed only for X=CM; likewise, the positioning of RCC  holds for

X=M. Note also that the mereological component X in a B
–

 SX-theory cannot be extensional
unless ‘~’ is defined as in RCC .

6. THIRD STRATEGY: TOPOLOGY AS A MEREOLOGY OF REGIONS

We finally come to the third mereotopological strategy mentioned above, which has
been put forward only recently [23,  24].  Here the idea is that, in spite of
“Whitehead’s dilemma”, a topological framework can be regained in a purely mereo-
logical setting (rather than vice versa) provided we embed it in a less restrictive do-
main. More precisely, one starts with a basic mereology and obtains topology as the
restriction of mereology to the domain of regions (as opposed to points and other
boundary-like elements). In this way, connection is neither more nor less than over-
lapping of regions, and yet the topological idea of external connection is made safe
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by the fact that the common part of two overlapping regions need not itself be a re-
gion. Using ‘R’ to indicate the new relevant (primitive) predicate of being a region,
this leads to the following.

DEFINITION 12.  Let X  be any mereological theory. The Minimal Region-Based
Mereotopology grounded on X  [labelled RBX] is the extension of X  obtained by
adding the following proper axioms for the Region predicate, ‘R’:

(R1) Cxy ↔ Oxy ∧ Rx ∧ Ry
(R2) ECxy ↔ Cxy ∧ ∀z(Pzx  ∧ Pzy  → ¬Rz).

(The treatment in [23, 24] focuses on the case X  = GEM, but other options are
open. Moreover, further specific axioms can be added to characterize the logic of
‘R’. For instance, [24] adds the closure axiom (C4') along with the following:

(96) Rx → ∃y(Opy ∧ Pxy)
(97) x=σy(Ry ∧ Pyx) → Rx,

from which (C5') also follows. See also the axiomatic treatments of ‘R’ indepen-
dently put forward in [7, 14].)

Of course, RBX can be formulated in a C-free language, using (R1) and (R2)
as definitions. Thus, since one immediately verifies that all of (C1)–(C3) are already
provable in the region-based theory grounded on Ground Mereology, RBM is
nothing but M , and topology is nothing but the subtheory that can be obtained by
uniformly restricting the range of quantifiers by a monadic predicate, ‘R’. More
precisely, let LP be the language of pure mereology, LC the language of strong
mereotopology (with ‘P’ defined), and LR the extension of LP obtained by adding
‘R’. Next, for any sentence φP of LP, let φC be the sentence of LC obtained from φ by
replacing each atomic component of the form ‘Pxy’ with ‘∀z(Czx  → Czy)’, and let
φR be the sentence of LR obtained from φP by recursively replacing each quantified
component of the form ‘∀xψ’ or ‘∃xψ’ (with ‘x’ free in ψ) with ‘∀x(Rx → ψ)’ and
‘∃x(Rx ∧ ψ)’, respectively. Then we have the following general characterization.

PROPOSITION 4 (Eschenbach & Heydrich [24],  Varzi [72]). Let KP be a mereologi-
cal theory in LP and let KC and KR be corresponding theories in LC and LR obtained
by replacing each KP-axiom φP with φC or φR, respectively. Then, for every sentence
φP of LP, KR |–  φR iff  KC |–  φC  .
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Thus, this approach allows one to keep within the boundaries of standard mereology
while at the same time pursuing a perspective akin to that of a strong mereotopol-
ogy. Some principles may not hold unrestrictedly in the restricted domain of re-
gions; but this simply mirrors the fact that such a domain (the extension of the predi-
cate ‘R’, on the intended interpretation) is deprived of some topologically relevant
elements, points and boundaries in the first place. For example, set KP = M , so that
KC = SMT  and KR = RBM. Then, taking φP to be the supplementation axiom (P4),
we have :

(98) SEMT  |– /  ¬Pxy → ∃z(Pzx  ∧ ¬Ozy)
(99) RBEM |– /  ¬Pxy → ∃z(Rz ∧ Pzx  ∧ ¬Ozy),

even though

(100) EM  |–  ¬Pxy → ∃z(Pzx  ∧ ¬Ozy)
(101) RBEM |–  ¬Pxy → ∃z(Pzx  ∧ ¬Ozy).

This shows that, in a sense, mereology needs very little help in order to cope
with certain basic topological notions and principles. Formally it is only a matter of
restricted quantification. If this amounts to saying that topology is exclusively about
regions of space (or about whatever selected entities one employs to fill in the exten-
sion of ‘R’), then one might raise the same objections considered above in relation
to the second strategy for combining mereology and topology: Whether we try to ex-
plain mereological relations among things in terms of topological relations among
the corresponding regions (strong mereotopology), or topological relations among
regions in terms of mereological relations among things of a kind (region-based
mereotopology), we seem to miss out on something important for the mereotopolog-
ical analysis of the everyday world. On the other hand, the present approach differs
from that of the previous section in that it draws no necessary reduction of parthood
to spatial connection, and this gives new content to the idea that topological reason-
ing about ordinary things can be inferred from the topology of the regions they oc-
cupy. On this approach, one may stick to reasoning about regions and yet keep track
of the relevant difference between enclosure and parthood, or between superposition
and overlapping. That is, the exact interplay between these notions is in principle left
open. For this reason, further developments of this line of research—for instance in
the spirit of a general theory of localization [14]—may deliver interesting results,
casting new light on the fundamental patterns of interaction between mereology and
topology.
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