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Philosophical Ontology 

Ontology as a branch of philosophy is the science of what is, of the kinds and structures of 

objects, properties, events, processes and relations in every area of reality. ‘Ontology’ is 

often used by philosophers as a synonym for ‘metaphysics’ (literally: ‘what comes after 

the Physics’), a term which was used by early students of Aristotle to refer to what 

Aristotle himself called ‘first philosophy’.2 The term ‘ontology’ (or ontologia) was itself 

coined in 1613, independently, by two philosophers, Rudolf Göckel (Goclenius), in his 

Lexicon philosophicum and Jacob Lorhard (Lorhardus), in his Theatrum philosophicum. 

The first occurrence in English recorded by the OED appears in Bailey’s dictionary of 

1721, which defines ontology as ‘an Account of being in the Abstract’.  

 

Methods and Goals of Philosophical Ontology 

The methods of philosophical ontology are the methods of philosophy in general. They 

include the development of theories of wider or narrower scope and the testing and 

refinement of such theories by measuring them up, either against difficult 

                                                 
1 This paper is based upon work supported by the National Science Foundation under Grant No. BCS-9975557 
(“Ontology and Geographic Categories”) and by the Alexander von Humboldt Foundation under the auspices of 
its Wolfgang Paul Program. Thanks go to Thomas Bittner, Olivier Bodenreider, Anita Burgun, Charles Dement, 
Andrew Frank, Angelika Franzke, Wolfgang Grassl, Pierre Grenon, Nicola Guarino, Patrick Hayes, Kathleen 
Hornsby, Ingvar Johansson, Fritz Lehmann, Chris Menzel, Kevin Mulligan, Chris Partridge, David W. Smith, 
William Rapaport, Daniel von Wachter, Chris Welty and Graham White for helpful comments. They are not 
responsible for the errors which remain. 
2 Sometimes ‘ontology’ is used in a broader sense, to refer to the study of what might exist, where ‘metaphysics’ 
is used for the study of which of the various alternative possibilities is true of reality. See Ingarden (1964). 
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counterexamples or against the results of science. These methods were familiar already to 

Aristotle. Some philosophical ontologists conceived ontology as being based on a special 

a priori insight into the essence of being or reality. Here, however, I prefer to look at the 

entire history of ontology as an endeavor which has some of the features of an empirical 

science. Seen from this perspective ontology is like physics or chemistry; it is part of a 

piecemeal, on-going process of exploration, hypothesis-formation, testing and revision. 

Ontological claims advanced as true today may well be rejected tomorrow in light of 

further discoveries or new and better arguments. 

Philosophical ontology as I shall conceive it here is what is standardly called 

descriptive or realist ontology. It seeks not explanation but rather a description of reality in 

terms of a classification of entities that is exhaustive in the sense that it can serve as an 

answer to such questions as: What classes of entities are needed for a complete description 

and explanation of all the goings-on in the universe? Or: What classes of entities are 

needed to give an account of what makes true all truths? Or: What classes of entities are 

needed to facilitate the making of predictions about the future? Sometimes a division is 

made – as for example in the case of Husserl and Ingarden – between formal and material 

(or regional) ontology. Formal ontology is domain-neutral; it deals with those aspects of 

reality (for example parthood and identity) which are shared in common by all material 

regions. Material ontology deals with those features (for example mind or causality) which 

are specific to given domains. If, as we shall argue, ontology must be multi-faceted, then 

there can be no sum of all material ontologies. 

 Philosophical ontology seeks a classification that is exhaustive in the sense that all 
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types of entities are included in its classifications, including also the types of relations by 

which entities are tied together. In striving for exhaustiveness philosophical ontology 

seeks a taxonomy of the entities in reality at all levels of aggregation (or, what comes to 

the same thing, at all levels of granularity), from the microphysical to the cosmological, 

and including also the middle world (the mesocosmos) of human-scale entities in between. 

Note that ontology as thus conceived is at odds with the attitude of reductionism, which 

sees reality in terms of some one privileged level of basic existents. Different schools of 

reductionism offer different approaches to the selection of the basic existents. One large 

division is that between what we might call substantialists and fluxists, which is to say 

between those who conceive reality in terms of substances or things and those who favor 

an ontology centered on process or function or on continuous fields of variation. Most 

reductionists are nominalists, which is to say that they deny the existence of universals or 

multiply-exemplfiied entities and conceive the world as being made up exclusively of 

individuals. 

Reductionists seek to establish the ‘ultimate furniture of the universe’. They seek to 

decompose reality into its simplest or most basic constituents. They thus favor a criterion 

of ontological economy, according to which an assay of reality is good to the degree to 

which it appeals to the smallest possible number of types of entities. The challenge is then 

to show that all putative reference to non-basic entities can be eliminated in favor of 

entities on the basic level. The idea is that what is true on the basic level explains those 

phenomena which appear to obtain on the non-basic levels. The striving for explanatory 

unification supports reductionism.  
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Descriptive or realist ontology, in contrast, requires a stand-point of adequacy to all 

levels of reality, both basic and non-basic.3 Reductionists seek to ‘reduce’ the apparent 

variety of types of entities existing in reality by showing how this variety is generated, for 

example through permutations and combinations of basic existents. The history of 

philosophical ontology is indeed marked by a certain trade-off between generativity on the 

one hand and descriptiveness on the other. By ‘generativity’ we understand the power of 

an ontology to yield new categories – and thus to exhaust the domain that is to be covered 

by ontological investigation – in some recursive fashion. By ‘descriptiveness’ we 

understand that feature of an ontology which consists in its reflecting, in more or less 

empirical ways, the traits or features of reality which exist independently of and prior to 

the ontology itself. It is generativity which gives an ontology its power to extend itself into 

new domains of entities; it is descriptiveness which ties an ontology to the world beyond.  

All ontologists must find a way to combine as best they can the indispensable virtues of 

both generativity and descriptiveness. Philosophical ontology can then be enhanced by 

taking over elements from the methodology of reductionism, for example through the use 

of the axiomatic method illustrated also in the work of Lesniewski, Woodger, Goodman 

and others in formal mereology and illustrated also in Part 2 of Carnap’s Introduction to 

Symbolic Logic (1958). Indeed in the course of the twentieth century a range of formal 

tools became available to ontologists for the formulation of their theories and for the 

evaluation of their formal qualities. Ontologists nowadays have a choice of formal 

frameworks (deriving from formal logic, as well as from algebra, category theory, 

mereology, set theory, topology) in terms of which their theories can be formulated. These 

                                                 
3 Though contrast Mäki 2001, pp. 502 f. 
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new formal tools allow philosophical ontologists to express intuitive principles and 

definitions in a clear and rigorous fashion, and they can allow also for the testing of 

theories for formal consistency and completeness through the application of the methods 

of formal semantics.  

It is the work of philosophical ontologists such as Aristotle, Ingarden (1964), Chisholm 

(1996)4 which will be of primary importance for us here. Their work rests upon the realist 

presupposition that a single consistent ontological theory can comprehend the whole of 

reality at least at some high level of generality and abstractness. The taxonomies they 

propose are in many ways comparable to scientific taxonomies such as those produced by 

Linnaeus in biology or by Dalton in chemistry, though radically more general than these. 

All three of the mentioned philosophers are realists about universals, and all three 

transcend the dichotomy between substantialists and fluxists, since they accept categories 

of both things and processes, as well as other categories distinct from both of these.  

 

Ontology and Science 

Philosophical ontology is a descriptive enterprise. It is distinguished from the special 

sciences not only in its radical generality but also in its primary goal or focus: it seeks, not 

predication or explanation, but rather taxonomy. Ontology is (very largely) qualitative. 

Science is (very largely) quantitative. Science starts, very roughly, with measurement and 

prediction. It starts where we use quantitative tools to make taxonomies systematic. The 

importance of taxonomies has, however, been neglected in mainstream philosophy of 

science, almost certainly as a consequence of the dominant ethos of nominalism in 

                                                 
4 See also Simons 1987, Johansson 1989, Mulligan (ed.), 1992, Searle 1995. 
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twentieth century analytical philosophy. Philosophical ontology tells us what categories 

exist within a given domain of reality and thus also what categories are available for the 

measurement process. Science tells us (for example) how the measurable behavior of 

entities of a certain class is correlated with the behavior of entities of a second class. And 

while ontologists themselves do not measure reality there is, still, an ontology of measure 

(Bigelow and Pargeter 1990).  

Sciences, by definition, can deal only with the objects which fall within their respective 

domains. Ontology deals with transcategorial relations – including the relations which 

hold between entities belonging to distinct domains of science, and also between these 

entities and the entities recognized by common sense.  

Strawson (1959) draws in this connection a distinction between two different kinds of 

ontological investigation. On the one side is what he calls ‘descriptive metaphysics’, 

which aims to lay bare the most general features of the conceptual scheme we do in fact 

employ – which is roughly that of common sense. On the other side is ‘revisionary 

metaphysics’, which is prepared to make departures from this scheme, for example in light 

of developments in science. As Strawson puts it: ‘descriptive metaphysics is content to 

describe the actual structure of our thought about the world, revisionary metaphysics is 

concerned to produce a better structure.’ 

Strawson’s descriptive metaphysics is certainly related to ontology as here conceived. 

But it is to be distinguished therefrom in that the very dichotomy between descriptive and 

revisionary metaphysics masks from view the links between those parts of our ontology 

that pertain to the reality accessed by common sense, and those parts of our ontology (at 
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different granularities) that pertain to science. Ontology a seeks precisely to do justice in 

descriptive fashion to all of the various parts and dimensions of reality on all levels of 

granularity, whether these be accessed by science, by common sense, or by some other 

means. It should be noted for future reference that Strawson’s two type of metaphysics are 

distinguished from ontology also in this: that they are directed not to reality itself, but 

rather to the ‘conceptual schemes’ which we employ when engaging with reality. 

 

Ontology and Taxonomy 

An ontology is, in first approximation, a table of categories, in which every type of entity 

is captured by some node within a hierarchical tree. This ideal lay at the root of Aristotle’s 

thinking on categories, as also of that of his medieval successors, and it has been 

resurrected in the thinking of contemporary ontologists such as Chisholm, who presents 

the following table of categories in his (1996): 

 

   Entities 
                                                                     /          \ 
                                                                   /             \ 
                                                                 /                \ 
                                                               /                   \ 

Contingent                     Necessary 
                                                           /       \                                /        \  
                                                          /          \                             /           \          
                                                         /            \                           /             \ 
                                                        /              \                         /                \  

      States         Individuals         States        Non-states 
                                                /                    /         \                                   /       \  
                                               /                    /           \                                 /         \       
                                              /                    /             \                               /           \ 
                                             /                    /                \                            /             \ 

       Events      Boundaries      Substances      Attributes      Substance 
 
 

Figure 1: Chisholm’s Tree 
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In principle all entities in reality would be comprehended along these lines within a single 

tree, which is then extendible via the drawing of ever finer distinctions. This principle is at 

work in the taxonomy presented by the seventeenth century English polymath John 

Wilkins, Bishop of Chester, in his An Essay toward a Real Character and Philosophical 

Language (1668). Here Wilkins proposed a universal taxonomy of forty genera, which he 

lists as follows:  

 

transcendent relations: General, Mixed, Of Action  

unclassified: Discourse, God, World, Element, Stone, Metal  

plants: Herb Leaf, Herb Flower, Herb S. Ves., Shrub, Tree  

animals: Exsanguinous, Fish, Bird, Beast  

parts: Peculiar, General  

quantity: Magnitude, Space, Measure  

quality: Natural Power, Habit, Manners, Sensible Quality, Sickness  

action: Spiritual, Corporeal, Motion, Operation 

relation: Economic, Possessions, Provisions, Civil, Judicial, Military, Naval, 

Ecclesiastical. 

 

Wilkins’ taxonomy is designed to serve as the basis for an ideal language, analogous to the 

characteristica universalis conceived by Leibniz as a language in which it would be 

possible to express all concepts via systematic composition from a list of simple or basic 
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concepts. Where however Leibniz was, in the terms of our earlier discussion, a 

generativist, Wilkins’ project is carried out against the background of a descriptivist 

ontology, so that there is for example no attempt to reduce all genera to complexes of 

atoms or motions or other simples. Wilkins’ universal character is distinguished also by 

the fact that it refers only to existing entities, leaving no room for concepts of fiction or 

mythology. On the other hand, however, Wilkins’ ontology and its associated universal 

character are unsatisfyingly ad hoc. Thus a conspicuously large fraction of his book is 

devoted to the two categories of Stone and Metal. Wilkins subdivides the former into 

common (silica, gravel, schist), modic (marble, amber, coral), precious (pearl, opal), 

transparent (amethyst, sapphire) and insoluble (chalk, arsenic). The latter he divides into 

imperfect (cinnabar, mercury), artificial (bronze, brass), recremental (filings, rust) and 

natural (gold, tin, copper). 

It was this odd treatment of Stone and Metal which served as the jumping-off point for 

Borges’ essay “The Analytical Language of John Wilkins”, which is however devoted not 

so much to Wilkins’ Real Character, which Borges had not read, as to a fictional ‘Chinese 

Encyclopedia’ (ascribed by Borges to a certain ‘Franz Kuhn’), in which it is written that 

animals are divided into:  

1. those that belong to the Emperor  

2. embalmed ones  

3. those that are trained  

4. suckling pigs  

5. mermaids  
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6. fabulous ones  

7. stray dogs  

8. those included in the present classification  

9. those that tremble as if they were mad  

10. innumerable ones  

11. those drawn with a very fine camelhair brush  

12. others  

13. those that have just broken a flower vase  

14. those that from a long way off look like flies.  

There are a number of distinct dimensions along which ontologies can be compared, and 

as our discussion of the trade-off between generativity and descriptiveness makes clear, 

there will be no single criterion which we can use to sort the wheat from the chaff. 

Already on the basis of sheer inspection, however, we can see that there are a number of 

important respects in which Borges’ Chinese classification falls short of the classifications 

set forth by Chisholm and Wilkins. One such respect, which we shall here take to be of 

central importance, concerns the degree to which ontology is compatible with the results 

of the natural sciences (at least with those natural sciences which deal with entities on the 

same level of granularity as ontology itself). Other criteria for evaluation pertain to the 

breadth or scope and to the unity of an ontological taxonomy. Ideally, as in the simple 

table of categories propounded by Chisholm, an ontology should consist of a single all-

encompassing taxonomy. As we shall see, however, all the mentioned criteria relate to an 

ideal case only, an ideal which is in fact unrealizable in the actual practice of ontology in 
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the world in which we live.  

Well-Formed Taxonomies 

Other criteria which taxonomies must aim to satisfy if they are to serve the needs of 

ontology have to do with the well-formedness of the taxonomy itself. (Bittner and Smith 

2001) We can set forth a preliminary list of principles of well-formedness. These, too, 

however, are intended to delineate the ideal case only. 

1.  A taxonomy should take the form of a tree in the mathematical sense. 

This means that, as in the case of Chisholm’s tree above, it should be a connected graph 

without cycles. The nodes of the tree then represent categories at greater and lesser levels of 

generality, and branches connecting nodes represent the relations of inclusion of a lower 

category in a higher. Corresponding to the inclusion relation between subordinate and 

superordinate nodes within the tree is the relation of part to whole between the respective 

totalities of objects out there in the world to which the nodes correspond. The totality of 

objects belonging to the included category is a sub-totality of the totality of objects belonging 

to the including category. To insist on the tree structure is to insist, in effect, that from any 

given node in the tree there is at most one branch issuing upwards. A category is thereby 

never subordinate to more than one higher category within the tree. (In visual terms a tree has 

no diamonds.) This means that if two categories represented within a tree are such that their 

respective families of instances overlap, then one is a subcategory of the other. 

The germ of the no diamonds principle is the idea that a classification should involve no 

double-counting. If, in counting off the cars passing beneath you on the highway, your 
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checklist includes one box labeled red cars and another box labeled Chevrolets, we will 

rightly insist that there is something amiss, because you will almost certainly be guilty of 

counting some cars twice. Another problem is that there is no natural relationship between 

these two nodes of your classification, which seem as though they ought properly to belong to 

two distinct classifications made for two distinct purposes. 

Inspection reveals that the taxonomies employed by the natural sciences – for example in 

zoology or botany or chemistry – satisfy, at least ideally, the mentioned condition. Putative 

counterexamples to the rule are found in the realm of artifacts. For example, a taxonomy of 

urban structures might employ the two categories: car parks and buildings, both of which 

seem to be superordinate categories to parking ramp. It is always possible, however, to 

eliminate such counterexamples by replacing one or the other of the relevant superordinate 

categories – for example substituting parking area for car park – in such a way that the 

overlap is eliminated (Guarino and Welty 2002). 

Certainly it is useful for some purposes to employ taxonomies which depart from the tree 

structure by placing a given category simultaneously on a number of separate branches within 

a hierarchy in such a way that it inherits information from each branch. Thus a given virus 

might be a type of RNA virus that is also associated with lymphoma in tortoises. Such cross-

classification confuses two purposes, however. On the one hand is the strictly taxonomical 

purpose, which attempts to establish at each level within the tree a jointly exhaustive and 

pairwise disjoint inventory of the entirety of the domain to which the taxonomy applies at a 

given level of granularity. On the other hand is the task of encoding knowledge about the 

instances of a category associated with a given node of a tree. 
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2. A taxonomy should have a basis in minimal nodes, representing lowest categories in 

which no sub-categories are included.  

The term ‘basis’ here is to be understood in the mathematical sense familiar from the 

theory of vector spaces. Rule 2. is designed to guarantee that the categories at the lowest 

level of the tree exhaust the maximal category in the way in which, for example, a 

chemical classification of the noble gases is exhausted by the nodes Helium, Neon, Argon, 

Krypton, Xenon and Radon. This rule ensures also that every intermediate node in the tree 

is identifiable as a combination of minimal nodes.  

3. A taxonomy should be unified in the sense that it should have a single top-most or 

maximal node, representing the maximum category. 

This maximal category then includes all the categories represented by the nodes lower 

down the tree. The justification for this principle lies in the fact that a taxonomy with two 

maximal nodes would be in need of completion by some extra, higher-level node 

representing the union of these two maxima. Otherwise it would not be one taxonomy at 

all, but rather two separate and perhaps competing taxonomies, the claims of each of 

which would need to be considered in their own right.  

 If the whole of ontology could be represented as a taxonomy in this sense, then we 

could employ a single term – such as ‘entity’ – as a label for the highest-level category of 

ontology. Everything which exists would be an entity in the intended sense. (Alternative 

top-level terms which have been favored by different ontologists include: ‘thing,’ ‘object,’ 

‘item,’ ‘element,’ ‘existent.’) 

Unfortunately, as Aristotle already recognized, the prospects for ontology as a single 
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taxonomic tree are very poor. There is a variety of cross-cutting ways of establishing 

ontological categories in reality. All of these ways are compatible (as one can slice a 

cheese in a variety of different but yet compatible ways). Yet they cannot be combined 

together to form a single taxonomic slicing. Moreover, even single rather narrow domains 

such as those of colors, shapes, emotions, seem to resist classification in the terms of a 

single taxonomic tree. 

 

Ontology as a Family of Trees 

How, now, in light of what has been said about taxonomies and trees, are we to conceive 

ontology? Unfortunately, in spite of the example of Chisholm and Wilkins, it is an 

unrealizable ideal to suppose that ontology would consist in a single taxonomy 

comprehending all of reality and satisfying the rules for well-formedness we have 

mentioned above. The features listed are not simultaneously realizable. Above all, 

ontology must consist not in one tree but in a family of trees, each reflecting specific 

views (facets or factors) of the targeted domain – for example (microscopic, mesoscopic, 

macroscopic) views effected at different granularities. 

Different views or facets arise above all because of the different ways in which the 

categories of entities in reality relate to time: some entities exist in time, either in the 

manner of substances, which endure identically from moment to moment, or in the manner 

of processes, which unfold themselves in time phase by phase. Other entities (it is 

commonly held) exist outside time. This holds, for example, of numbers, Platonic forms, 

and other ideal entities. To put such different kinds of entities together, with Chisholm, 
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into a single ontological tree, would seem to presuppose that there is some (temporal?) 

order to which they all belong. Another argument against the single tree conception put 

forward by Aristotle turns on the principles by which the lower levels of a tree are derived 

from the levels above. For Aristotle this derivation is a form of specification: a human is a 

rational animal, an animal is a living substance, and so on. If all of ontology were to take 

the form of a single tree, then there must be some highest category, say entity, of which all 

lower categories would then be specifications. But what would the highest category be, of 

which both animal and action (for example) would alike be specifications?  

As Bishop Wilkins’ system very clearly reveals, the very complexity of reality already 

brings with it the necessity to classify the entities in the world according to a variety of 

different facets or dimensions. If we try to cram the whole of our ontology into a single 

tree then this results in arbitrary orderings – which differentia should one choose and in 

which order as one proceeds down the tree? – and either to duplication or omission. 

Wilkins himself recognized this problem, but justified it on pragmatic grounds.5 It is 

Wilkins’ tree-structuring that is at fault when stones are categorized into common, modic, 

precious, transparent and insoluble. These are in and of themselves perfectly good 

categories (thus it is quite reasonable to classify diamonds with rubies rather than with 

coal). But what Wilkins’ classification reveals is that there are different aspects under 

which stones can be reasonably classified, and the structure of a single tree forces the 

choice of just one of these aspects, so that one must either ignore all the rest or integrate 

them in an ad hoc manner.  

                                                 
5 Wilkins 1666, Chapter XII, I, Sec. I, p. 289. Wilkins 1666, Chapter XII, I, Sec. I, p. 289. 



 

 16 

  
 

Philosophical ontology is more complex still in virtue of the fact the ontology studies 

not just taxonomies of reality but also partonomies, which is to say assays of the parts of 

entities of given types. We leave to one side this issue here, noting only that taxonomies 

and partonomies should not be confused: to say that the category of rabbits is a sub-

category of the category of mammals is a quite different sort of statement from the 

statement that a rabbit’s leg is a part of a rabbit. 

 

Ontological Commitment 

To create effective representations it is an advantage if one knows something about the 

things and processes one is trying to represent. (We might call this the Ontologist’s 

Credo.) The attempt to satisfy this credo has led philosophers to be maximally 

opportunistic in the sources they have drawn upon in their ontological explorations of 

reality. These have ranged all the way from the preparation of commentaries on ancient 

texts to reflection on our linguistic usages when talking about entities in domains of 

different types. Increasingly, philosophers have turned to science, embracing the 

assumption that one generally reliable way to find out something about the things and 

processes within a given domain is to see what scientists say.  

Some philosophers have thought that the way to do ontology is exclusively through the 

investigation of scientific theories. With the work of Quine (1953) there arose in this 

connection a new conception of the proper method of ontology, according to which the 

ontologist’s task is to establish what kinds of entities scientists are committed to in their 
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theorizing. The ontologist studies the world by drawing conclusions from the theories of 

the natural sciences, which Quine takes to be our best source of knowledge as to what the 

world is like. Such theories are extensions of the theories we develop and use informally 

in everyday life, but they are developed with closer attention to certain special kinds of 

evidence that confer a higher degree of probability on the claims made. Quine’s aim is to 

use science for ontological purposes, which means: to find the ontology in scientific 

theories. Ontology is then a network of claims, derived from the natural sciences, about 

what exists. Each natural science has, Quine holds, its own preferred repertoire of types of 

objects to the existence of which it is committed. Each such theory embodies only a partial 

ontology. This is defined by the vocabulary of the corresponding theory.  

Note that Quine himself takes ontology seriously. Thus he does not embrace a view 

according to which ontology is the meta-level study of the ontological commitments or 

presuppositions embodied in the different natural-scientific theories. Ontology is rather 

these commitments themselves. Quine moves to the meta-level, making a semantic ascent 

to consider the statements in a theory, only in setting out to establish those expressions 

which definitively carry its commitments. The latter are marked in his eyes by their special 

logical form, which is revealed in their canonical representation in first-order predicate 

logic. 

Quine fixes upon the language of first-order logic as the medium of canonical 

representation, not out of dogmatic devotion to this particular form. He conceives first-

order logic simply as a regimentation of corresponding parts of ordinary language from 

which those features which are logically problematic have been excised. It is then, Quine 
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argues, only the bound variables of the theory as canonically represented that carry its 

definitive commitment to existence. It is sentences like ‘There are horses,’ ‘There are 

numbers,’ ‘There are electrons,’ that do this job. His so-called ‘criterion of ontological 

commitment’ is captured in the slogan: To be is to be the value of a bound variable. This 

should not be understood as signifying some reductivistic conception of existence itself as 

a merely logico-linguistic matter. Rather it is to be interpreted in practical terms: to 

determine what the ontological commitments of a scientific theory are it is necessary to 

examine the predicates holding of the bound variables used in its canonical formalization. 

Quine’s approach is thus most properly conceived not as a reduction of ontology to the 

study of scientific language, but rather as a continuation of ontology in the traditional 

sense.6 When viewed in this light, however, it can be seen to be in need of vital 

supplementation. For the objects of scientific theories are discipline-specific. This means 

that the relations between objects belonging to different disciplinary domains fall out of 

bounds for Quinean ontology. Only something like a philosophical theory of how different 

scientific theories (or their objects) relate to each other can fulfil the task of providing an 

inventory of all the types of entities and relations in reality. Quine himself would resist 

this latter conclusion. For him the best we can achieve in ontology lies in the quantified 

statements of particular theories, theories supported by the best evidence we can muster. 

We have no way to rise above the particular theories we have; no way to unify their 

respective claims.  

 

                                                 
6 While Quine is a realist, which means that he believes in a mind-independently structured world, his realism is 
considerably watered down as a result of his theses of the empirical underdetermination of theories and of the 
underdetermination of translations. Together, these imply that the structure of the mind-independent world is in 
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Internal vs. External Metaphysics 

Quine is a realist philosopher. He believes in a world beyond language and beliefs, a world 

which the theories of natural science give us the power to illuminate. There is, however, 

another tendency in twentieth-century analytic philosophy, a tendency inspired by Kant 

and associated above all with the names of Carnap and Putnam, according to which 

ontology is a meta-level discipline which concerns itself not with the world itself but 

rather only with theories or languages or concepts or systems of beliefs. Philosophical 

ontology in the traditional sense – ontology as a first-level discipline directed to the world 

beyond – is impossible. For such an ontology would require what the just-mentioned 

philosophers call ‘external metaphysics’, which is to say metaphysics carried out on the 

basis of what they like to call a God’s eye perspective, from which one could view reality 

as it exists independently of our language and concepts. Since such a perspective is (so the 

mentioned philosophers argue) for us unavailable, it follows that the best we can achieve 

is internal metaphysics, which means the study of the ontological commitments of specific 

languages, theories, or systems of beliefs. Strawsonian descriptive metaphysics is one 

example of such internal metaphysics. Model-theoretic semantics, too, is often implicitly 

understood in internal-metaphysical terms – the idea being that we can never understand 

what a given language or theory is really about, but we can build models with more or less 

nice properties. But we can never compare these models to some reality beyond.  

Ontology in the traditional philosophical sense is thus replaced by the study of how a 

given individual or group or language or science conceptualizes a given domain. It is a 

theory of the ontological content of certain representations. Traditional ontologists are 

                                                                                                                                                        
a strict sense unknowable, bring Quine into the company of Kant. At best we can rank competing theories from 
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seeking principles that are true of reality. The practitioners of internal metaphysics, in 

contrast, are seeking to elicit principles from subjects or theories. The elicited principles 

may or may not be true, but this, to the practitioner of internal metaphysics, is of no 

concern, since the significance of these principles lies elsewhere – for instance in yielding 

a correct account of the taxonomical system used by speakers of a given language or by 

scientists working in a given discipline. 

 

Ontology Outside Philosophy 

In a development that has hardly been noted by philosophers, a conception of the job of 

the ontologist close to that of the adherents of internal metaphysics has been advanced in 

recent years also in certain extra-philosophical disciplines, as linguists, psychologists and 

anthropologists have sought to elicit the ontological commitments (‘ontologies’, in the 

plural) of different cultures and groups. Exploiting the terminology of Quine, researchers 

in psychology and anthropology have sought to establish what individual human subjects, 

or entire human cultures, are committed to, ontologically, in their everyday cognition,7 in 

much the same way in which philosophers of science had attempted to elicit the 

ontological commitments of the natural sciences. Thus they have engaged in inquiries 

designed to establish how folk ontologies (or folk biologies, folk theories of physics, folk 

psychologists, and so on) develop through infancy and childhood, or to establish the 

degree to which given elements of folk ontologies reflect universal features of the human 

cognitive system. 

                                                                                                                                                        
a pragmatic point of  view. 
7 See for example Keil 1979, Spelke 1990, Medin and Atran 1999, Xu and Carey 1996. 
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Note that it was still reasonable for Quine to identify ontology in the traditional sense – 

the search for answers to the question: what exists? – with the study of the ontological 

commitments of natural scientists. It is, after all (and leaving to one side the troublesome 

case of quantum mechanics) a reasonable hypothesis to suppose that all natural sciences 

are, if not consistent with each other, then at least such that the inconsistencies which arise 

can be eliminated through the efforts of the scientists themselves. Moreover, the 

identification of the method of ontology with the isolation of ontological commitments 

continues to seem reasonable when one takes into account not only the natural sciences 

but also certain commonly shared commitments of common sense – for example that 

tables and chairs and people exist. For the common-sense taxonomies of objects can be 

shown to be in large degree compatible with those of scientific theory, if only we are 

careful to take into account the different granularities at which each operates (Smith and 

Brogaard, in press). 

Crucially, however, the identification of ontology with the isolation of ontological 

commitments becomes strikingly less defensible when the ontological commitments of 

various specialist groups of non-scientists are allowed into the mix. For how, 

ontologically, are we to treat the commitments of Meinongian philosophers, or 

astrologists, or believers in leprechauns? 

Ontology in Information Science 

In a related development, also hardly noticed by philosophers, the term ‘ontology’ has 

gained currency in recent years in the field of computer and information science in a way 
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which has led to a veritable explosion of publications and conferences on the topic of 

ontology, a term which has become popular especially in domains such as knowledge 

engineering, natural language processing, cooperative information systems, intelligent 

information integration, and knowledge management. The philosopher-ontologist, in 

principle at least, has only one goal: to establish the truth about reality by finding an answer 

to the question: what exists. In the world of information systems, in contrast, an ontology is a 

software (or formal language) artefact designed with a specific set of uses and computational 

environments in mind. An ontology is often something that is ordered by a specific client in a 

specific context and in relation to specific practical needs and resources.  

The work of Quine played an important role, too, in the initial phases of the development 

of what I shall henceforth refer to as ‘information systems ontology’. It seems that the first 

use of the term ‘ontology’ in the computer and information science literature occurs already 

in 1967, in a work on the foundations of data modeling by S. H. Mealy, in a passage which 

concludes with a footnote referring to Quine’s essay “On What There Is”. Here Mealy 

distinguishes three distinct realms in the field of data processing: 

the real world itself, ideas about it existing in the minds of men, and symbols on paper 

or some other storage medium. The latter realms are, in some sense, held to be models 

of the former. Thus, we might say that data are fragments of a theory of the real 

world, and data processing juggles representations of these fragments of theory. No 

one ever saw or pointed at the integer we call “five” – it is theoretical – but we have 

all seen various representations of it, such as: 

 V   (101)2   58  5  0.5E01 
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and we recognize them all as denoting the same thing, with perhaps different flavours. 

… The issue is ontology, or the question of what exists. (Mealy 1967. p. 525)  

This concern with questions which are recognizably ontological in the philosophical sense – 

what are data? how do data relate to the real world? – arose in reflection of quite specific 

practical problems which needed to be faced in the late 1960s by those working in the field of 

database management systems. Just as philosophical ontology has been marked by debates 

between fluxists and substantialists, so the field of artificial intelligence was marked by 

debates between the so-called proceduralists and declarativists. What is the relative 

significance of process and content (or of procedures and data) in the project of modelling 

intelligent reasoning and constructing intelligent machines? Proceduralists believed that the 

way to create intelligent machines was by instilling into a system as much knowledge how as 

possible, via ever more sophisticated programs. Declarativists, on the other side, believed that 

intelligent machines would best be arrived at by instilling into a system a maximum amount 

of content, of knowledge that – knowledge in the form of representations.  
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In the database management systems field, now, the increasing size and complexity of 

programs meant in turn increasing difficulties in maintaining such programs and putting them 

to new uses. Some in the database community saw both the procedural and the declarative 

elements of computer systems as representations: programs are representations of processes, 

data structures are representations of objects or things. Recall, now, the Ontologist’s Credo, 

that if one wants to create effective representations it is an advantage if one knows something 

about the objects and processes one is trying to represent. This means that one must know not 

only about the specific token objects (customers, payments, debts) recorded in one’s 

database, but also about objects, properties and relations in general, and also about the 

general types of processes in which objects, properties and relations can be involved. The 

declarativist response to these problems was to embark upon an effort to provide robust 

taxonomies of the types of entities used in given application domains. The idea was to build 

declarative representations of the standard sorts of procedures – for example business 

processes of ordering or scheduling – in a way that was designed to enable different 

application systems to re-use the same program elements over and over again, and in a way 

which would also have the effect of making application systems smaller in terms of code. 

(There is an obvious relation, here, to the paradigm of object-oriented software, where the 

idea is to organize a program in such a way that its structure mirrors the structure of the 

objects and relationships in its application domain (Kim 1990). Here, too, one claim that is 

made on behalf of the programs which result is that they enjoy the benefits of portability.) 

All of these tendencies can be seen at work in the idea of the so-called three schema 

architecture advanced in the database field in the 1970s (Jardine 1977). This distinguishes: 1. 
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implementation schemas, describing physical ways of storing the data and object code of the 

program; 2. conceptual schemas, in terms of which declarative representations are 

formulated; and 3. presentation schemas, which are applied at external interfaces for the 

purposes of communicating to the user. These are three distinct perspectives or views which 

can be taken of a database. When we take an internal perspective, we describe the physical 

layout of the data in the computer. When we take a conceptual perspective, we describe the 

types of information stored, the relationships and operations recognized by the database. 

When we take an external perspective, we consider the real world to which the database is 

directed, primarily in terms of the ways in which its outputs will be made available to 

ultimate users. The three schema architecture thus offers a way for those who are responsible 

for the maintenance of the physical data, those who are responsible for managing the data, 

and those who use the data, to refer, each in his own fashion, to the same object. 

A database management system offers services for programmers and users designed to 

ensure that correct data types are employed for given objects or attributes, for example that an 

age is a number greater than zero and less than 150. All information pertaining to each 

different object- and attribute-type is controlled by the system in ways designed to facilitate 

consistency checking and portability from one database to another. In this way all the 

structural knowledge pertaining to the application domain is captured in one central place.  

The step from here to ontology in something like the traditional philosophical sense of this 

term is then relatively easy. The data analyst realizes the need for declarative representations 

which would have as much generality as possible in order to maximize the possibility of 

reusability. But at the same time these representations must correspond as closely as possible 



 

 26 

  
 

to the things and processes they are supposed to represent. Thus he starts asking questions 

like: What is an object/process/attribute/relation? He begins, in other words, to take seriously 

the Ontologist’s Credo. Gradually he begins to see the attempt to answer such questions as a 

theoretical enterprise in its own right – the enterprise of providing a formal representation of 

the main categories of entities and relations in a given domain that can be shared between 

different application environments. 

The explosion of work in information systems ontology can be seen in this light as 

reflecting the efforts on behalf of at least some computer and information scientists to look 

beyond the artefacts of computation and information to that big wide world beyond to which 

these artefacts relate.  

  
 Ontology in Artificial Intelligence 

 

One early influential use of the term ‘ontology’ in the computer science community was 

by John McCarthy in his 1980 paper on ‘circumscription.’ McCarthy argues in this paper 

that the proper treatment of common-sense reasoning requires that common-sense 

knowledge be expressed in a form which will allow us to express propositions like ‘a boat 

can be used to cross rivers unless there is something that prevents its use.’ This means, he 

says, that: 

we must introduce into our ontology (the things that exist) a category that 

includes something wrong with a boat or a category that includes something that 

may prevent its use. … Some philosophers and scientists may be reluctant to 

introduce such things, but since ordinary language allows “something wrong with 
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the boat” we shouldn’t be hasty in excluding it. … We challenge anyone who 

thinks he can avoid such entities to express in his favorite formalism, “Besides 

leakiness, there is something else wrong with the boat.” (p. 31)  

McCarthy is here using ‘ontology’ in something very close to the Quinean sense: we know 

what we are ontologically committed to if we know what kinds of entities fall within the 

range of the bound variables of a formalized theory. 

Another early use of the term is in the writings of Patrick Hayes, a collaborator of 

McCarthy, above all in Hayes’ “Naïve Physics Manifesto” of 1979. This , advocates a view 

of AI research as something which should be based not on the procedural modeling of 

reasoning processes but rather on the construction of systems embodying large amounts of 

declarative knowledge. Here Hayes takes up the torch of a program outlined by McCarthy 

already in 1964, rooted in the idea that even a rather simple program – equivalent to an axiom 

system formulated in first-order predicate logic – could manifest intelligent reasoning. He 

breaks with McCarthy only in the estimate of the likely size of the knowledge base (or list of 

predicates and axioms) needed. Thus in the “Naïve Physics Manifesto” he proposes 

abandoning the toy examples that drive McCarthy’s work and building instead a massive 

theory of physical reality as faced by untutored human beings acting in their everyday 

intereactions with objects in the world. Thus he concentrates on the formalization of all those 

manifest physical features which are relevant to the actions and deliberations of human 

beings engaged in the serious business of living.  

 Something of the order of 10,000 predicates would, Hayes thought, need to be 

encoded if the resulting naïve physics was to have the power to simulate the reasoning about 
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physical phenomena of non-experts, and a range of large-scale projects of this type are, he 

argued, essential for long-term progress in artificial intelligence. Hayes’ “Ontology for 

Liquids” (1985a), an early version of which is dated 1978, represents one detailed 

development of naïve physics in relation to a domain of objects and phenomena which had 

been almost totally neglected by traditional philosophical ontology. 

 The methodology here can be traced back to the already mentioned Introduction to 

Symbolic Logic of Carnap. It consists in what Carnap calls applied logic, which is to say: the 

attempt to formulate axiomatically theories from various domains of science. Where Carnap 

turns to science, Hayes turns to human common sense. His idea is that the axioms of naïve 

physics should constitute a computational counterpart of human mental models. Thus they 

are supposed to be about the real world, not about the mental models themselves. The axioms 

of naïve physics are formulated, not by addressing matters psychological, but rather by 

thinking ‘naively’ about the world (which is to say: as a normal human actor, rather than as a 

scientist) and then trying to capture that knowledge of the world formally.  

Hayes reports that the attempt to formalize his own intuitive understanding of liquids led 

him to an ontology 

within which one could account for the difficulty that young children have in 

following conservation arguments; but I didn't set out to model this Piagetian 

phenomenon, and indeed when I told psychologists about what I was doing, I was 

met with a strange mixture of interest and disapproval, precisely because I was 

not setting out to test any particular psychological theory about mental structure, 

which they often found puzzling and unsettling. (Interestingly, the only people 
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who seemed to immediately ‘get it’ were the Gibsonians, whose own 

methodology strictly required a similar kind of focussing on the world being 

perceived, rather than the perceiver.) (Personal communication)8 

Thus Hayes takes it as a basic assumption that our mental models in fact are about the 

physical features of the world itself, and thus that their computational counterparts will 

also be about the same reality. His naïve physics is thus intended as a genuine contribution 

to ontology in something like the traditional philosophical sense, in the spirit, perhaps, of 

Wilfrid Sellars who in 1963 advanced a thesis to the effect that there is a universal 

common-sense ontology, which he called the ‘manifest image’, and which he held to be a 

close approximation to the enduring common core of traditional philosophical ontology 

(also called the ‘philosophia perennis’) initiated by Aristotle. 

 

The Grip on Reality 

Hayes is already in 1979 acutely aware of the fact that any first-order axiomatization of a 

theory has an infinity of non-intended models (including completely artificial models 

constructed out of the symbols by means of which the theory itself is formulated).9 In the 

first version of his Manifesto he was still confident that it would be possible to do 

something to overcome this problem of non-intended models and thus to find a way to 

home in on physical reality itself. By 1985, however, when he published his “Second 

Naïve Physics Manifesto”, a revised version of the earlier work, in he has lost some of this 

earlier confidence. 

                                                 
8 Gibsonians believe that the way to understand human mental functioning is to investigate human beings in 
typical human environments. See J. J. Gibson 1979, Heft 200• . 
9 The results of Gödel and Löwenheim-Skolem demonstrated that any first-order axiomatic theory will have 
unintended models in the semantic (set-theoretical) sense of ‘model’. See for example Enderton 2001. 
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The original “Manifesto” had listed four criteria which a formalised naïve physics 

would have to satisfy:  

1. thoroughness (it should cover the whole range of everyday physical phenomena),  

2. fidelity (this means it should be reasonably detailed, though ‘since the world itself is 

infinitely detailed, perfect fidelity is impossible’ (1979, p. 172) 

3. density (the ratio of represented facts to concepts should be fairly high)  

4. uniformity (it should employ a single formal framework).  

In the second version of the Manifesto items 1., 3. and 4 in this list remain the same (except 

that thoroughness is renamed breadth). But – importantly for our purposes – the criterion of 

fidelity is dropped, in a way which represents a move (witting or unwitting) on Hayes’ part 

from the traditional goal of philosophical ontology: that of providing representations 

adequate to reality. 

Initially Hayes had been confident that the problem of unintended models could be at least 

alleviated by insisting that the theory be faithful to reality through the addition of lots of extra 

detail, thus for example by ensuring through extra axioms that every model have an 

essentially three-dimensional structure. He found, however, that this optimism as concerns 

the problem of unintended models could not be sustained. In the second version, therefore, he 

talks not of faithfulness to reality but, much more loosely, of ‘faithfulness to alternative 

models’. ‘If I thought there was any way to pin down reality uniquely, then I would jump at 

the chance; but I don't think there is (for humans or machines).’ (Personal communication) 

This new criterion of faithfulness is of course much easier to satisfy (depending on how 

liberal one is in the understanding of the term ‘alternative’ in the phrase ‘alternative models’). 
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 In the first Manifesto, Hayes could still write as follows: ‘since we want to formalize 

the common-sense world of physical reality, this means, for us, that a model of the 

formalization must be recognizable as a facsimile of physical reality’ (1979, p. 180). In the 

second manifesto, in contrast, we read instead of our ability ‘to interpret our axioms in a 

possible world.’ To establish whether given axioms are true or not means to develop ‘an idea 

of a model of the formal language in which the theory is written: a systematic notion of what 

a possible world is and how the tokens of the theory can be mapped into entities … in such 

worlds’ (1985, p. 10). This implies a new conception of the goal of naïve physics – and thus 

of the goal of information systems ontology to the extent that the latter is a generalization of 

the original naïve physics idea. On this new conception, ontology has to do with what entities 

are included in a model in the semantic sense, or in a possible world. This conception is 

present also in the writings of John Sowa, who refers to ‘an ontology for a possible world – a 

catalogue of everything that makes up that world, how it’s put together, and how it works’ 

(1984, p. 294). 10 

Even in the later version of his Manifesto, however, Hayes still leaves open the possibility 

of a genuine solution of the problem of non-intended models, namely by equipping the 

system with external links to reality. This could be done by having the formal theory be in a 

creature with a body: ‘some of the tokens can be attached to sensory and motor systems so 

that the truth of some propositions containing them is kept in correspondence to the way the 

real world actually is.’ Alternatively it could be done by having the theory converse with 

                                                 
10 More recently Sowa provides two – for him apparently equivalent – definitions of the term ‘ontology’. The 
first is in keeping with the more traditional philosophical sense of the term: “The subject of ontology is the study 
of the categories of things that exist or may exist in some domain.” The second seems to involve a confusion 
between ontology and an epistemologically based study of ontological commitments of a language: “[an 
ontology] is a catalog of the types of things that are assumed to exist in a domain of interest D from the 
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users of natural language like ourselves, creatures whose beliefs refer to external entities. We 

would then ‘have no reason to refuse the same honor to the conversing system.’ (1985, p. 13) 

If the trick of homing in upon this, our actual world can be carried off in this or in some 

other way then it would follow in Hayes’ eyes that this actual world would be a model of 

the theory. One passage included in both versions is then highly illuminating in this 

respect. It is a passage in which Hayes advances the thesis that a model can be a piece of 

reality.  

If I have a blocks-world axiomatization which has three blocks, ‘A’, ‘B’, and ‘C’, 

and if I have a (real, physical) table in front of me, with three (real, physical) 

wooden blocks on it, then the set of these three blocks can be the set of entities of 

a model of the axiomatization (provided, that is, that I can go on to interpret the 

relations and functions of the axiomatization as physical operations on the 

wooden blocks, or whatever, in such a way that the assertions made about the 

wooden blocks, when so interpreted, are in fact true). There is nothing in the 

model theory of first-order logic which a priori prevents the real world being a 

model of an axiom system. (1979, p. 181; 1985, p. 10)  

We shall return to this thesis below.  

 

The Database Tower of Babel Problem 

In the AI community the goal (‘artificial intelligence’) is one of radically extending the 

boundaries of automation. There we see ontology building as a process of extending the 

frontiers of what can be represented in systematic fashion in a computer, with the analogy 

                                                                                                                                                        
perspective of a person who uses a language L for the purpose of talking about D.” See: 
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to the knowing human subject in the background. It is however in the data modeling and 

knowledge representation communities that information systems ontology has made its 

biggest impact. Here the goal is to integrate the automated systems we already have. Here 

the problems faced by ontologists are presented by the foibles of the often very tricky and 

unstable systems used, for example, in the different parts of a large enterprise (and these 

problems are only further compounded by the fact that computer systems can themselves 

serve as mechanisms for constructing elements of social reality such as deals, contracts, 

debt records, and so forth). 

The most important task for the new information systems ontology pertains to what 

we might call the Database Tower of Babel problem. Different groups of data- and 

knowledge-base system designers have for historical and cultural and linguistic reasons 

their own idiosyncratic terms and concepts by means of which they build frameworks for 

information representation. Different databases may use identical labels but with different 

meanings; alternatively the same meaning may be expressed via different names. As ever 

more diverse groups are involved in sharing and translating ever more diverse varieties of 

information, the problems standing in the way of putting such information together within 

a larger system increase geometrically.  

                                                                                                                                                        
http://users.bestweb.net/~sowa/ontology/ 



 

 34 

  
 

 It was therefore recognized early on that systematic methods must be found to resolve 

the terminological and conceptual incompatibilities between databases of different sorts 

and of different provenance. Initially, such incompatibilities were resolved on a case-by-

case basis. Gradually, however, the idea took root that the provision of a common 

reference taxonomy might provide significant advantages over such case-by-case 

resolution. The term ‘ontology’ then came to be used by information scientists to describe 

the construction of a reference taxonomy of this sort. An ontology is in this context a 

dictionary of terms formulated in a canonical syntax and with commonly accepted 

definitions designed to yield a lexical or taxonomical framework for knowledge-

representation which can be shared by different information systems communities. More 

ambitiously, an ontology is a formal theory within which not only definitions but also a 

supporting framework of axioms is included (the axioms themselves providing implicit 

definitions of – or constraints upon the meanings of – the terms involved).  

The potential advantages of such ontology for the purposes of knowledge representation 

and information management are obvious. Each group of data analysts would need to 

perform the task of making its terms and concepts compatible with those of other such 

groups only once – by calibrating its results in the terms of a single shared canonical 

backbone language, a sort of ontological Esperanto. If all databases were thus calibrated in 

terms of just one common ontology built around a consistent, stable and highly expressive 

set of category labels, then the prospect would arise of leveraging the thousands of person-

years of effort that have been invested in creating separate database resources in such a 

way as to create, in more or less automatic fashion, a single integrated knowledge base of 
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a scale hitherto unimagined, thus fulfilling an ancient philosophical dream of an 

encyclopedia comprehending all knowledge within a single system.  

 The ontological foundation of this Great Encyclopedia would consist of two parts. On 

the one hand is what is otherwise referred to in the database community as the 

terminological component (T-box) of the knowledge base. To this would be adjoined the 

assertional component (or A-box), which is designed to contain the representations of the 

corresponding facts. Technically the T-Box is that component in a reasoning system that 

allows, using a logic that is strictly weaker than the first-order predicate calculus, the 

computation of subsumption relations between terms (relations expressed by sentences 

like A rabbit is a mammal, A keyboard operator is an employee, and so on – called isa 

relations in what follows). The A-Box is everything else. 

Nicola Guarino, one of the principal figures of this information systems ontology and 

initiator of the influential FOIS (Formal Ontology and Information Systems) series of 

meetings, has formulated the matter as follows. An ontology is  

an engineering artefact, constituted by a specific vocabulary used to describe a 

certain reality, plus a set of explicit assumptions regarding the intended meaning 

of the vocabulary words. … In the simplest case, an ontology describes a 

hierarchy of concepts related by subsumption relationships; in more sophisticated 

cases, suitable axioms are added in order to express other relationships between 

concepts and to constrain their intended interpretation. (Introduction to Guarino 

1998) 

The phrase ‘a certain reality’ here signifies in the first place whatever domain one happens to 
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be interested in, whether this be hospital management or car component warehouse 

inventories. The phrase also however reflects the same sort of tolerant approach to the 

identity of the target domain of one’s ontology as was present earlier in Sowa and in Hayes’ 

second Manifesto. Not only existent objects, but also non-existent objects, would in principle 

be able to serve as forming ‘a certain reality’ in the sense Guarino has in mind. ‘A certain 

reality’ can rather include not only pre-existing domains of physics or biology but also 

domains populated by the products of human actions and conventions, for example in the 

realms of commerce or law or political administration. 

 The work of Guarino and his group is inspired in no small part by Aristotle and by 

other philosophical ontologists in the realist tradition. Like them, but with quite different 

purposes in mind, he seeks an ontology of reality which would contain theories or 

specifications of such highly general (domain-independent) categories as: time, space, 

inherence, instantiation, identity, matter, cause, measure, quantity, functional dependence, 

process, event, attribute, boundary, and so forth. 

 The preferred methods used in the construction of ontologies as conceived by Guarino 

and others are derived on the one hand from the earlier initiatives in database management 

systems referred to above. But they also include methods similar to those employed in logical 

and analytical philosophy, including axiomatization methods of the type used by Carnap, and 

also the methods used when developing formal semantic theories. They include the derivation 

of ontologies from existing taxonomies, databases and dictionaries via the imposition of 

constraints – for example of terminological consistency and hierarchical well-formedness 

(Guarino and Welty 2000) – and they include the derivation of ontologies from linguistic 
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corpora, for example on the basis of systems such as WordNet.11 WordNet defines concepts 

as clusters of terms called synsets. The 100,000 synsets within WordNet are then related 

together hierarchically via a subsumption relation (called ‘hyponymy’) defined as follows: 

A concept represented by the synset {x, x′, …} is said to be a hyponym of the concept 

represented by the synset {y, y′,…} if native speakers of English accept sentences 

constructed from such frames as ‘An x is a kind of y’. 

On this basis a taxonomy can be defined satisfying some weak version of the rules for 

taxonomies set forth above. Note that WordNet is not  conceived by its authors as an 

ontology. It is however treated as such by many in the knowledge representation field, though 

with various problematic consequences. (Gangemi et al. 2001). 

 

Obstacles to Information Systems Ontology 

The obstacles standing in the way of the extension of such an ontology to the level of 

categorical details which would be required to solve the real-world problems of database 

integration are unfortunately prodigious. They are analogous to the task of establishing a 

common ontology of world history. This would require a neutral and common framework 

for all descriptions of historical facts, which would require in turn that all events, legal and 

political systems, rights, beliefs, powers, and so forth, be comprehended within a single, 

perspicuous list of categories.12  

 Added to this problem of extension are the difficulties which arise at the level of 

adoption. To be widely accepted an ontology must be neutral as between different data 

                                                 
11 http://www.cogsci.princeton.edu/~wn 
12 The Cyc project is attempting to create a framework of this sort, though we shall see below that there are 
serious questions as to whether its methodology can resolve the problems which must be solved if the 
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communities, and there is, as experience has shown, a formidable trade-off between this 

constraint of neutrality and the requirement that an ontology be maximally wide-ranging 

and expressively powerful – that it should contain canonical definitions for the largest 

possible number of terms. 

One way to address these problems is to divide the task of ontology into two sub-tasks. 

On the one hand there is formal ontology: the ontology of part and whole, of identity and 

difference, of dependence and independence. On the other hand are particular domain-

specific or regional ontologies, for example, ontologies of geography, or medicine, or 

ecology. The relation between the formal and the domain-specific ontologies is then in 

some respects analogous to that between pure and applied mathematics. Just as all 

developed sciences use mathematics, so all domain-specific ontologists should ideally 

have as their foundation the same robust and widely accepted top-level ontology. The 

methods used in the development of a top-level ontology are indeed to some degree like 

those of mathematics in that they involve the study of structures that are shared in 

common between different application domains. Once general theorems have been proved 

within the framework of formal ontology, they can be applied without further ado in all 

material ontologies which are specifications of this formal framework. 

  

Examples of Information Systems Ontologies and Their Formal Precursors 

 

KIF  

To get some idea of the type of formal theorizing that has developed under the heading of 

                                                                                                                                                        
integration of data deriving from disparate sources is to occur. 
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information systems ontology in recent years it will be useful to examine in detail three 

specific formal theories or frameworks, beginning with KIF (for ‘Knowledge Interchange 

Format’), the work of Mike Genesereth and his colleagues in Stanford. (Genesereth and 

Fikes 1992). Although not itself conceived for ontological purposes, the language KIF is 

nonetheless an important milestone in the development of ontology as a solution to the 

problems of knowledge sharing and knowledge integration. KIF is a variant of the 

language of the first-order predicate calculus, motivated by the goal of developing an 

expressive, flexible, computer- and human-readable medium for exchanging knowledge 

bases. 

 The existence of such a language means that each system, provided its syntax is 

translatable into that of KIF, can internally handle data in its own ways and communicate 

with its human users in yet other ways, but with the guarantee that the results of the 

system’s operations will be automatically compatible with those of other systems likewise 

structured in such a way as to be compatible with KIF.  

 The language has three essential features: 1. a standard set-theoretical semantics 

(which is, in computer science terms, a descriptive rather than a procedural semantics), 2. 

logical comprehensiveness – which means that it has all the expressive resources of the 

first-order predicate calculus, 3. the ability to support the representation of representations, 

or of knowledge about knowledge.  

KIF’s primary influence has been syntactical. Its notation offered a convenient means 

by which formulas of first-order logic could be entered at the keyboard, without the need 

to use special symbol fonts. The influence of KIF has accordingly rested on those parts of 
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its machinery which are directly associated with its syntax. 

 The semantic side of KIF rests on the technical notion of conceptualization introduced 

by Genesereth and Nilsson in their (1987). Conceptualizations are set-theoretic objects, 

built up out of two sorts of components: a universe of discourse, which is a set of objects 

hypothesized to exist in the world, and a set of relevant properties, relations and functions, 

which are themselves extensionally conceived as sets of ordered tuples. More precisely, 

relations and functions are sets of (finite) lists of objects, lists themselves being finite 

sequences of objects.  

Thus for example (and with some crude simplification) the conceptualization involved 

in a situation where John is kissing Mary might be: 

<{John, Mary}, {male_person, female_person, kissing}>. 

A conceptualization is thus an object of a type familiar from standard set-theoretic model 

theory. Given a conceptualization, the individual terms of KIF denote objects in the 

associated universe of discourse, the predicate terms of KIF are assigned values from the 

set of associated properties and relations. Semantics is then relative to conceptualization in 

the sense that sentences are true or false according to the conceptualization with which one 

begins. 

A universe of discourse is made up of objects. Objects themselves are subdivided into 

individuals, on the one hand, and sets or classes on the other. (KIF includes von 

Neumann-Bernays-Gödel set theory as a constituent part.)  

 Each universe of discourse must include at least the following objects: 

- Complex numbers, which can be seen as couples of real numbers, one real part 
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and one so-called imaginary part. (Real numbers are complex numbers whose 

imaginary part is null. KIF thus includes the real and rational numbers and also 

the integers, and all sorts of arithmetical, trigonometric logarithmic operations 

can then be defined within the KIF framework.) 

- An object which is the conventional value of functions for nonsensical 

combinations of arguments. 

- All finite lists of objects and all sets of objects. 

- KIF words and expressions (conceived as lists of terms, which may themselves 

be lists). 

It is this last item which allows the representation of representations within the KIF 

framework which makes expressions objects of the universe of discourse and at the same 

time includes a truth predicate and tools for manipulating expressions such as operators for 

quotation and for denoting the denotation of a given term. The analysis in terms of lists 

means that KIF also has the facility to analyze the internal structure of expressions. 

Expressions can be referred to via the quotation operator, their properties can be discussed, 

and expressions may even be quantified over, thus enabling the formulation of axiom 

schemata. This enables also quantification over parts of expressions. KIF’s truth operator 

can be applied both to quoted and to unquoted expressions under conditions designed to 

avoid paradoxes. (The central role of lists in KIF also lends it a familiarity to logic 

programming languages such as LISP.) 

KIF’s basic universe of objects can be freely extended – for example (as in the case 

discussed above) by adding the individuals John and Mary – to generate the universe of 
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discourse for a given conceptualization. Given such a universe of discourse, all finite lists 

of objects in the universe on the one hand are included, together with all sets of objects in 

the universe on the other.  

 

Examples of KIF Formalism 

For notational convenience in what follows I shall avoid the use of lists, with the single 

exception that the notation ‘(x, y)’ will be used to denote the list of length two of which 

the first member is x and the second y. In all other cases, whenever a set is defined in the 

original KIF formalism using lists, I have used a more compact set-theoretic notation. 

Upper-case letters are used as names for predicates, lower-case letters as names for 

function. 

 

Logical constants 

~: not; ∧ : and; ∨ : or; →: implies; ↔: iff; ∃ : there exists; ∀ : for all; ∈ : is a member of 

Some primitive terms and definitions:  

Set(x) := x is a set  

List(x) := x is a list 

Individual(x) :=  ~Set(x) 

Bounded(x) := x can be a member of a set. 

Unbounded(x) :=  ~Bounded(x) 

SimpleSet(x) :=  (Set(x) ∧  Bounded(x)) 

ProperSet(x) :=  (Set(x) ∧  Unbounded(x)) 
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Empty(x) := x is the empty set  

{x : F(x)} denotes the set of all bounded objects that satisfy F. 

for all sets x and y, x ⊆  y := ∀ z (z∈ x  z∈ y) 

for all sets x, generalizedUnion(x) := {a : ∃ t (a∈ t ∧  t∈ x)} 

for all sets x, y, z, intersection(x, y, … , z) := {a : (a∈ x ∧  a∈ y ∧  … ∧  a∈ z)} 

 

Some noteworthy axioms and theorems13  

Set(x) ∨  Individual(x) 

Bounded(x) ∨  Unbounded(x) 

x∈ y  (Bounded(x) ∧  Set(y)) 

Relation(x) ↔ (Set(x) ∧  ∀ y(y∈ x → List(y))) 

 

Extensionality property of sets  

Set(x) ∧  Set(y))  ((∀ z (z∈ x  z∈ y))  (x = y)) 

 

Axiom of regularity  

(Set(x) ∧  ~Empty(x))  ∃ y(y∈ x ∧  Empty(intersection(x,y))) 

 

Axiom of choice 

∃ s (Set(s) ∧  ∀ x (x∈ s  (∃ a∃ b (x = (a, b))) ∧  ∀ x∀ y∀ z (((x, y)∈ s ∧  (x, z)∈ s)  (y = z))) ∧  

∀ u ((Bounded(u) ∧  ~(Empty(u)))  (∃ v (v∈ u ∧  (u, v)∈ s))))) 
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Subset axiom 

Bounded(x)  Bounded({y : y ⊆  x}) 

 

Intersection axiom  

(Bounded(x) ∧ Set(y)) Bounded(intersection(x, y)) 

 

Union axiom  

(Bounded(x) ∧ ∀ y (y∈ x Bounded(x)))) Bounded(generalizedUnion(x)) 

 

Axiom of infinity  

∃ x (Bounded(x) ∧  ~Empty(x) ∧  ∀ y (y∈ x  (∃ z (z∈ x ∧  y ⊆  z ∧  ~(z ⊆  y ))))) 

 

Ontolingua  

On the basis of KIF, Tom Gruber and his associates at the Stanford Research Institute 

developed a more serviceable language for ontology representation known as Ontolingua 

(Gruber 1992, 1995), designed to serve as a lingua franca for those involved in building 

ontologies. Ontolingua is built up on the basis of KIF 3.0, but it has a very distinctive 

purpose. Where KIF is conceived as an interface between knowledge representation systems, 

Ontolingua is intended as an interface between ontologies (analogous, again, to Esperanto). It 

provides an environment and a set of software tools designed to enable heterogeneous 

ontologies to be brought together on a common platform via translation into a single 

language. 

                                                                                                                                                        
13 Here and in what follows initial universal quantifiers are taken as understood. 



 

 45 

  
 

Ontolingua adds to the original core language of KIF features which allow the 

representation of the structural components of an ontology. Above all, it allows an extended 

treatment of relations (with an almost exclusive focus on binary relations conceived as sets of 

binary lists), and it introduces the notion of class. Classes are formally defined as unary 

relations, that is as sets of lists of length one, whereby the members of lists are necessarily 

individuals and are called the instances of the class. In addition Ontolingua includes the 

notion Individual-Thing (the class of objects that are not sets but can be elements of a set). 

There is also the class Thing, which is defined as the class encompassing all entities 

susceptible of being in a class, namely Individual-Things and Simple-Sets. Thing seems to 

correspond to the class of bounded entities in KIF.  

Ontolingua otherwise endorses the general KIF approach, not least in its extensional 

conception of properties and relations (including functions and classes), all of which are 

conceived as sets of n-tuples, the latter themselves being conceived as finite lists. 

Neither KIF nor Ontolingua embraces the idea of a single shared ontology. There is no 

suggestion that its authors wanted to incorporate even such notions as time and process, 

matter and mind within their respective frameworks. The major goal of the authors of 

Ontolingua was rather to collect a large number of distinct, specialized ontologies, and to 

provide the linguistic resources for moving back and forth between them. 

 

Some sample definitions from Ontologia 

For all x such that List(x), length(x) denotes the length of the list x 

Holds(x, y1, …, yn) ↔ (Relation(x) ∧  (y1, … , yn)∈ x) 
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Individual-Thing(x) := ~Set(x) ∧  Bounded(x) 

Class(x) := Relation(x) ∧  ∀ y (y∈ x → length(y) = 1)) 

Instance-Of(x, y) := Class(y) ∧  Holds(y, x) 

Note that ‘relation’ here includes also unary relations (or what would otherwise be referred to 

as properties-in-extension). 

 

Description logics 

Description logics, also known as terminological logics, reflect the attempt to find a fragment 

of first-order logic with a maximally high expressive power and yet still a decidable and 

efficient inference procedure, so that they can serve as engines of efficient reasoning 

procedures. (Baader, et al., forthcoming)  

Description logics focus on the representation of concepts and on hierarchical 

classification. Given a sufficiently rich set of concept descriptions a reasoning apparatus 

employing description logic will generate the corresponding subsumption tree. The goal of 

description logics is thus to derive what are called isa relationships (as for example between 

Bootsie and Dog, Dog and Mammal, Person and Entity-with-height, Employee and Entity-

With-Social-Security-Number). Each description logic is formally a subset of first-order logic 

with certain second-order features. A description logic contains unary predicates, binary 

predicates, and individual constants. The heart of the description logic is its classes. These are 

defined intensionally in terms of descriptions that specify the properties that the objects of the 

class must satisfy. Classes should thus be conceived not as collections of elements but rather 

in a manner dictated by the traditional mode of representation of sets or classes by means of 
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expressions of the form ‘{x : ϕx}.’ 

A family of description logics – including BACK, CLASSIC, CRACK, FLEX, K-REP, 

KL-ONE, KRIS, LOOM – has been developed. Such logics are used for example in the 

querying of (large) knowledge bases; they are the chosen tool underlying the medical 

ontology GALEN and they underlie much current work under the sponsorship of the 

European Union and of the US Defense Department within the DAML+OIL framework, not 

least on the so-called semantic web (Berners Lee, et al. 2001), which will consist of formal 

ontologies represented in some a unified description logic. 

 

DAML+OIL 

DAML+OIL is the ontology of the Defense Advanced Research Projects Agency, a 

combination of the DARPA Agent Markup Language (http://www.daml.org), with the so-

called Ontology Inference Layer (OIL: http://www.ontoknowledge.org/oil). This has the goal 

of exploiting the power and flexibility of XML as a framework for the construction of 

specialist ontologies – XML is the universal format for structured documents and data on the 

world wide web – as part of standardization  efforts involving also the attempt to create the 

Ontology  Web  Language  (OWL).   

This is because DAML+OIL ensures that its reasoning can be performed in provably short 

times relative to competitor systems by accepting severe restrictions on its expressive powers. 

DAML+OIL has no way of treating individuals. It can only deal with classes/concepts. This 

is how the official DAML+OIL doctrine responds to this problem: 

Results from research in description and modal logics show that the computational 
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complexity of such logics changes dramatically for the worse when domain-

instances are allowed in class definitions … . For this reason, OIL currently does not 

allow the use of instances in slot-values, or extensional definitions of classes (i.e., 

class definitions by enumerating the class instances). It is not clear how serious a 

restriction [this ban on referring to individuals] is for an ontology language, as 

ontologies should, in general, be independent of specific instantiations – it may be 

that in many cases, ‘individuals’ can more correctly be replaced with a primitive 

class or classes. (Horrocks et al., n. d.) 

By ‘instance’ here is meant: contingently existing individual; by ‘specific instantiation’: 

instantiation in a domain of contingently existing individuals. Note the nature of the 

reasoning here: There are these things (people, the planet Earth, etc.) that we cannot handle 

with our reasoning system; so we shall pretend they are not there. 

Cyc

One of the most influential information systems ontology projects is that of Cyc (Lenat and 

Guha 1990, http://www.cyc.com), which grew out of an effort initiated by Doug Lenat, one 

of the pioneers of AI research, to formalize common-sense knowledge in the form of a 

massive database of axioms covering all things, from governments to mothers.  

Cyc started as a research project in the early 80’s. In 1995 Lenat created a company, 

Cycorp, charged with the task of developing further the technology and its applications. Cyc 

is intended to be able to serve as an encyclopedic repository of all human knowledge. (‘Cyc’ 

comes from en-cyc-lopedia.) As such it purports to provide a medium for the representation 

of facts and the inscription of rules about all existing and imaginable things.  
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Cyc is thus an ontology project in the spirit of Wilkins’ Real Character, and (as in the 

case of Wilkins) the resulting ontology has been criticised for its ad hoc (which is to say: 

unprincipled) nature. It takes the form of a gigantic hierarchy, with a topmost node labelled 

Thing, beneath which are a series of cross-cutting total partitions including: Represented 

Thing vs. Internal Machine Thing, Individual Object vs. Collection, Intangible vs. Tangible 

Object vs. Composite Tangible and Intangible Object. Examples of Intangible Objects 

(Intangible means: has no mass) are sets and numbers. A Person in the Cyc ontology is a 

Composite Object made up of a Tangible Body and an Intangible Mind.  

That Cyc is unprincipled turns on the fact that the partial order from out of which it is 

constructed came into being and is presented additively – in much the way an encyclopedia is 

constructed – which means that it is glued together via logical conjunction. Given Cyc’s 

encyclopedic mission, it is of course crucial that CycL should be extendable arbitrarily by the 

addition of terminology relevant to any domain. Cyc’s knowledge-base is compartmentalized 

into microtheories, but additional microtheories can be introduced at will in order to account 

for each successive new domain or context with very few constraints on the addition of new 

microtheories or of new terms or axioms. 

The ontology is thus not divided in systematic fashion into distinct facets or dimensions of 

reality or into distinct levels of granularity, and nor are its terms stratified into levels of basic 

terms and defined terms of successively higher-orders of complexity. Cyc has taken some 

steps towards rectifying this latter defect with the construction of the Upper Cyc Ontology, 

containing several thousand terms capturing ‘the most general concepts of human consensus 

reality’ (http://www.opencyc.org), but the methodological principles at the heart of Cyc 
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continue to sanction the introduction of new terms in ways governed only by informal criteria 

that appeal to pragmatic considerations and intuition rather than to constraints which are the 

product of genuine analysis. 

CycL: The Cyc Knowledge Representation Language 

CycL is the knowledge representation language associated with Cyc. It is sometimes 

presented as a second-order language, sometimes as an (unsorted) first-order language with 

higher-order capabilities. Cyc allows quantification over predicates and relations and, more 

generally, it admits collections, objects of arbitrary order built on the first layer of individuals 

(collections of individuals, collections of such collections, and so forth). It allows the 

expression of relations holding among objects, relations holding among collections in Cyc’s 

technical sense), and also relations holding among CycL sentences themselves. CycL also 

possesses some of the resources of modal logic, together with features derived from natural 

language such as generalized quantifiers (‘every’, ‘most’, ‘many’).  

CycL possesses categories of relations unified by the shared properties of their elements. 

For instance, $FunctionalPredicate is the category of relations that are functional in at least 

one of their argument places. The term ‘type’ is sometimes used to stand for collection of 

collections, so that #$RelationshipType is in CycL the collection of collections of relations. 

There are predicates, such as #$arg2Isa, which are used to stipulate the type of objects that 

can occupy (in this case) the first and second argument places of a given relation. (These 

examples are taken from http://www.opencyc.org.) 

Cyc itself is a knowledge base written in CycL; thus it is a set of CycL expressions. Cyc is 

thus referred to as an ontology in the sense that it ‘contains’ objects, roughly speaking the 
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CycL terms, articulated by axioms, which are CycL sentences (and which themselves can be 

considered as terms).  

The Cyc Ontology 

The ontology of Cyc is made up of individual objects and set-like objects. The latter are 

divided further into sets and so-called collections. Individual objects in Cyc include people, 

countries, computer programs, and so forth. Cyc also has a rich suite of temporal relations 

(such as temporallySubsumes, temporallyIntersects, and cotemporality). It has the facility of 

quantifying over real properties and relations, and also over collections and over sets of 

individuals and tuples.  

Above the categories of individuals and set-like objects is an all-encompassing category, 

the collection Thing. Everything is a Thing (in the technical sense of ‘is a’ – written ‘isa’ in 

Cycl), including Thing itself. Several independent partitions cut through the domain called 

Things. These allow us to define the Collections of temporal, spatial, intangible Things as 

well as Collections of artifacts, agents, organisms and so on. There are also more abstract 

types of individuals, including objects that are peculiar to Cyc itself, such as Cyc’s own 

constituent microtheories. The relation isa holds between any Thing T and any Collection of 

which T is an instance. Apart from isa the most important relation among Things in Cyc is 

that of generalization (written: ‘genls’), which holds between two Collections C1 and C2 

when all the instances of C1 are instances of C2. (genls is a specialization of the subsetOf 

relation among sets.) 

Individuals are those objects that have parts but no elements. Non-individuals are either 

sets or collections. The distinction between sets and collections is fundamental and 
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corresponds to the two ways in which, in more familiar treatments, sets can be referred to: by 

extension, that is by enumerating the elements of a set on one hand, and by intension or by 

providing a criterion for membership in a set on the other. Sets then follow a principle of 

extensionality that does not hold for collections. 

An example illustrating this last point and taken from the Cyc documentation runs as 

follows:  

So in Cyc®, #$USPresidentsNamedRoosevelt, 

#$USPresidentsWhoWereEachOthersFifthCousins, and 

#$TheFirstTwoUSPresidentsWhoseLastNamesBeginWithR would all be 

different #$Collections, even though they are all comprised of exactly the 

same elements as the mathematical set {Theodore Roosevelt, Franklin Delano 

Roosevelt}. 

Thus although Collections are sometimes referred to as if they were natural kinds and called 

‘types’, they are in fact associable with arbitary criteria (as the just-mentioned example 

reveals). Suppose A and B are both presented with the same objects during a certain time 

interval. There are then two Collections of objects, the Collection of objects that A saw and 

the Collection of objects that B saw. These collections are distinct, though co-extensional. Put 

another way, each collection is a generalization (in the sense of ‘genls’) of the other. 

Moreover, there is also a third collection, which is the collection of objects that both A and B 

saw. And if C is some other person who saw none of the mentioned objects, then there is yet 

another collection consisting of the objects that both A and B saw but which C did not see. 

Note, too, that although in defining the notion of Collection Cyc appeals to a common feature 
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that instances of a Collection need to share – i.e., the ‘intensional’ aspect of a Collection –the 

constraints which this feature must satisfy are left unexplicated. In the available 

documentation, it usually takes the form of an appeal to some intuitive understanding of a 

term found in natural language, but Collections seem to be admissible, too, when they are the 

mere products of arbitrary composition. (This kind of indeterminacy seems to be a general 

feature of Cyc.) 

 

Some simple definitions, axioms and theorems of Cyc 

Thing(x) := x is a thing 

Thing(Thing) 

Individual(x) := x is an individual;  

Individual(x) → Thing(x) 

Set(x) := x is a set 

Collection(x) := x is a collection 

~∃ x (Set(x) ∧  Collection(x)) 

SetOrCollection(x) ↔ (Set(x) ∨  Collection(x)) 

SetOrCollection(x) → Thing(x) 

Thing(x) ↔ (SetOrCollection(x) ∨  Individual(x)) 

~∃ x (SetOrCollection(x) ∧  Individual(x)) 

x∈ y → SetOrCollection(y) 

x⊆ y ↔ ∀ z (z∈ x → z∈ y) 

isa(x, y) → x∈ y 
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isa(x, y) → Collection(y) 

genls(x, y) ↔ (∀ z (isa(z,x) → isa(z,y))) 

genls(x, y) → (Collection(x) ∧  Collection(y)) 

genls(x, y) → x⊆ y 

 

Axiom of extensionality for sets 

 (Set(x) ∧  Set(y)) → ((∀ z (z∈ x ↔ z∈ y)) ↔ (x = y))) 

 

Existence axioms 

∃ x Thing(x) 

Thing(x) → ∃ y (SetOrCollection(y) ∧  x∈ y) 

∃ x∃ y (Collection(x) ∧  Collection(y) ∧  isa(x,y)) 

 

Philosophical Problems Raised by Information Systems Ontologies 

Some of the problems to which philosophical ontologists might call attention when 

addressing the literature of information systems ontology are merely terminological. Much of 

the latter is heavily influenced by a background in work on semantic nets, whose formal 

structure imposes a division of all entities (or of all that is represented) into two very broad 

categories: (REFERENCE) 

– concepts, represented by nodes 

– relations between concepts, represented by links. 

Gradually a third category was introduced, when it became clear that not only concepts 
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would need to be represented but also properties of concepts. In description logic the term 

‘role’ was (confusingly or not) selected for this third category. The vocabulary of description 

logic thus includes in addition to terms for concepts, which are identified as unary predicates 

and seen as denoting sets of individuals,  also terms for roles, which are binary predicates 

denoting binary relations. Examples of roles are: hasChild, isStudent, isAgent. In description 

logics one can quantify in a limited way over roles. 

There is (from the philosopher’s perspective) some cognitive dissonance awakened by 

the usage in much of the literature of information systems ontology of the terms ‘concept’ 

and ‘class’ as synonyms. This is illustrated in passages such as the following: 

Concepts, also known as classes, are used in a broad sense. They can be abstract 

or concrete, elementary or composite, real or fict[it]ious. In short, a concept can 

be anything about which something is said, and, therefore, could also be the 

description of a task, function, action, strategy, reasoning process, etc. (Corcho 

and Gomez-Perez 2000, p. 81) 

Philosophers and computer and information scientists, programmers and database engineers 

employ different idiolects, in a way which creates obstacles to mutual understanding. Closer 

examination of the information systems ontology literature, however, reveals that the 

terminological running together of ‘concept’ and ‘class’ often goes hand in hand with the 

ontological running together of what are in fact distinct realms (roughly: the theoretical realm 

and the realm of objects to which our theories are directed; or alternatively: the realm of 

linguistic representations and the realm of denotata).  

Generally, and in part for reasons of computational efficiency rather than ontological 
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adequacy, information systems ontologists have devoted the bulk of their efforts to 

constructing concept-hierarchies; they have paid much less attention to the question of how 

the concepts represented within such hierarchies are in fact instantiated in the real world of 

what happens and is the case. They have neglected, too, the question of the relationship 

between hierarchies of concepts, on the one hand, and hierarchies of universals or categories 

(natural kinds, genera and species) on the side of the things themselves.  

Information systems ontology is marked also by a tendency to sacrifice ontological 

adequacy to software efficiency. DAML+OIL, for example, (currently) has no ability to 

represent instances of concepts (or members of classes). 

 

The Role of Set Theory 

One noteworthy feature, especially of information systems ontologies built on the basis of 

KIF is the predominance of set-theory as a tool for purposes of ontology construction. 

Certainly set theory has great flexibility as a framework for modelling mathematical and 

other sorts of abstract structures, including many of the structures found in the commercial 

domains which for a long time served as the primary field of application for information 

systems ontology. But because sets are themselves abstract (they are entities existing outside 

the realm of space, time, and causality), a set-theoretical framework must at least be 

supplemented by other machinery if it is to serve as the basis of a complete ontological theory 

of the ripe, messy, changing world of concrete objects in which human beings live. Certainly 

it is true that cows, wombats, tropes and subatomic particles, can all be talked of using set-

theoretical language. The question is whether the relation between such entities and the other 
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types of entities in the universe can be adequately captured exclusively by means of the 

resources available in set theory. 

Matters are to some degree improving in this regard, as application domains for ontology 

become extended to include, for example, the fields of medicine and biology. Thus where 

early versions of KIF (up to 3.0) assume an extensional treatment of properties and relations, 

current versions allow distinct properties and relations to have the same extension. Cyc, too, 

as we have seen , includes radical departures from the extensionalism of set theory. Another 

example of a non-set-theoretical ontology is provided by the Process Specification Language, 

PSL, which uses KIF to formulate a simple theory of processes in terms of real-world entities 

of the following types: activities, activity occurrences, timepoints and objects. (Schlenoff, et 

al. 1999)  

Even in such cases, however, set theory is the sole resource that is applied when it comes 

to the semantics of the languages in question. How, then, are we to understand the ontology 

expressed in a language like KIF or PSL? Are we to conceive it as a theory of reality, 

analogous to more traditional philosophical ontologies? Or as a collection of formulas 

together with a set-theoretical semantics? Some information systems ontologists, such as 

Patrick Hayes, would answer: Yes to both.  This is because they conceive set-theoretical 

language as used in semantic contexts as involving no ontological claims about the nature of 

the world itself or about the things in it. As Hayes puts it, the application of set-theoretical 

language  

places no restrictions on the nature of the things in the universe; it does not 

require them to be set-theoretical constructions, any more than an engineer using 
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differential equations to describe a steel surface is somehow committed to saying 

that the surface is made of fluxions. (Personal communication)  

Thus, to use Quine’s criterion, the provision of a set-theoretical semantics for an ontology 

does not in itself commit one to having sets in one’s ontology. 

 Hayes himself is interested not in special set-theoretical models for ontological 

formulas but rather in those models that correspond to reality.14 Indeed, as we saw, he insists 

that a model for a first-order system can be a piece of reality.  

 But then in either case, if Hayes is right, our models must at least be compared with the 

corresponding reality in order to ensure the necessary degree of adequacy, Then, however, 

ontological investigations of this reality in something like the traditional philosophical sense 

become required in any case. And at this point the question arises whether the detour through 

semantics is needed, or is helpful, at all: why not just move directly to the task of establishing 

whether the ontological theory is itself adequate to reality. 

 Set-theoretic semantics can of course be valuable for other purposes. But the purposes 

of the ontologist and those of the semanticist are in any case independent of each other – and 

the job of the ontologist must involve the use of tools in addition to those of set theory, since 

not everything in reality is a set. 

Mereology, the formal theory of part and whole (Simons 1987), is a weaker instrument 

than set theory for purposes of mathematical modelling. It turns out, however, that much of 

what ontology requires in the form of supplements or alternatives to set theory can most 

naturally be provided within a mereological framework. A further advantage of mereology 

turns on the fact that mereology can be applied in the ontological investigation of a given 
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domain of objects even before we have any knowledge of any putative basic level of atoms 

(or ‘elements’) from out of which – if set theory is our only tool in doing ontology – this 

domain would have to be constructed. 

Mereology allows ontologists to begin their investigations with complex wholes as it were 

on the middle level of reality, and to work upwards and downwards from these, as 

corresponding coarser and finer grained theories become available. In this way the 

framework of mereology and also that of mereotopology – the qualitative theory of 

boundaries, contact and separation on a mereological basis (Smith 1996) – can support the 

simultaneous development of ontological theories on different levels of granularity, including 

theories of that mesoscopic reality that is presented to human beings in their everyday 

perceptions and actions. As Hayes puts it,  

most people associated with database technology, computational ontology work, 

data modelling and so on are vividly and acutely aware of the need to maintain 

correspondences with reality; often indeed more acutely than most theoreticians, 

being sensitive to issues such as the need for time-stamping and the need to 

reason about plausibility of conflicting information sources; often, millions of 

dollars or many people’s lives may turn on these models being accurate. One does 

not lightly deny a correspondence with reality when trying to make machines 

reason about anthrax biopsies (Personal communication) 

 

Good and Bad Conceptualizations 

                                                                                                                                                        
14 Only in certain technical contexts might special non-standard models need to be used in order to show up 
limitations or errors in existing formalizations. 
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There are a number of problems with the definition of ontology as a specification of a 

conceptualization. One is this: There are, surely, different specifications – in Hebrew, or in 

KIF, or in CycL, or in first-order predicate logic – all of which might very well describe what 

we can intuitively recognize as the same ontology. But if this is right, then ontology itself has 

nothing to do with the means of specification.  

 A deeper reason has to do with the confusion of two tasks: the study of reality, on the 

one hand (which philosophers, at least, would insist is the properly ontological task) and the 

study of our concepts of reality on the other. What would be wrong with a view of ontology – 

ontology of the sort that is required for information systems purposes – as a study of human 

concepts or beliefs (or as a matter of ‘knowledge representation’ or ‘conceptual modeling’)? 

The usage of ‘ontology’ as meaning just ‘conceptual model’ can be found already for 

example in (Alexander et al 1986). We can get a first hint of an answer to this question if we 

recall our treatment of folk biology above. There, it is clear, we find both good and bad 

conceptualizations – the former reflecting what actually exists in reality, the latter resting on 

ontological error; the former illustrated by a conceptualization of types of slime mold, the 

latter by a conceptualization of types of evil spirits. 

As we saw, conceptualizations are set-theoretic objects. They are built up out of two sorts 

of components: a universe of discourse, which is a set of objects ‘hypothesized to exist in the 

world’, and a set of properties, relations and functions, which are themselves sets of ordered 

tuples. Good conceptualization we can now define, loosely, as those conceptualizations 

whose universe of discourse consists only of existing objects (we would need to make similar 

restrictions on the associated properties, functions and relations in a more careful treatment). 
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Bad conceptualizations are all conceptualizations which do not satisfy this condition. If, then, 

there are not only good but also bad (objectless) conceptualizations, it follows that only 

certain ontologies as specifications of conceptualizations can be true of some corresponding 

domain of reality, while others are such that there is simply no corresponding domain of 

reality for them to be true of. Information systems ontology is, we must remember, a 

pragmatic enterprise. It starts with conceptualizations, and goes from there to the description 

of corresponding domains of objects (often confusingly referred to as ‘concepts’), but the 

latter are nothing more than models, surrogate created worlds, devised with specific practical 

purposes in mind. What is most important, now, is that all of the mentioned surrogate created 

worlds are treated by the ontological engineer as being on an equal footing. In a typical case 

the universe of discourse will be specified by the client or customer, and for the purposes of 

the ontological engineer the customer is always right (it is the customer in each case who 

defines his own specific world of surrogate objects). It is for this reason that the ontological 

engineer aims not for truth, but rather, merely, for adequacy to whatever is the pertinent 

application domain as defined by the client. The main focus is on reusability of application 

domain knowledge in such a way as to accelerate the development of appropriate software 

systems in each new application context. The goal, as we have seen, is not truth relative to 

some independently existing domain of reality – which is after all often hard to achieve – but 

merely (at best) truth relative to some conceptualisation. 

 

The Problem of Fusion 

Focusing on the concepts used by specific domain experts or groups or disciplines means also 
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that we face problems where the corresponding families of concepts have evolved 

independently of each other. Recall our discussion above of the problems facing the 

construction of a general ontology of world history; this would require a single neutral 

framework for all descriptions of all historical facts. We said that Cyc is attempting to create 

a framework of this sort. As far as one can grasp the methodology of Cyc from published 

sources, however, its strategy, when faced with disparate systems of laws or concepts, would 

be simply to add all of the corresponding microtheories to its knowledge base more or less at 

will. Thus (presumably) the description of the historical events surrounding, say, the 

Louisiana Purchase, would require microtheories of the Continental Napoleonic (codified) 

legal structures through which the matter was viewed from the French and Spanish side and 

microtheories of the Anglo-Saxon (common) legal structures adopted by the United States. 

These microtheories, and the corresponding legal vocabularies, would then exist side by side 

within the Cyc edifice. No attempt would be made to build a common framework within 

which the legal structures embraced by the two systems could be fused or merged or 

translated into each other. No attempt would be made, in other words, at integration. 

Ontology from this perspective, simply grows, rather like a spreading vine.  

 As we shall see, the problem of fusion that is here illustrated will have quite general 

consequences for the whole project of information systems ontology. And we can note in 

passing that it is an analogue of the problem of ‘incommensurability’ in the philosophy of 

science. 

 

Uses of Ontology in Information Science 
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The project of building one single ontology, even one single top-level ontology, which would 

be at the same time non-trivial and also readily adopted by a broad population of different 

information systems communities, is sustained by Cyc, but it has otherwise largely been 

abandoned. The reasons for this can be summarized as follows. The task of ontology-building 

proved much more difficult than had initially been anticipated (the difficulties being at least 

in part identical to those with which philosophical ontologists have been grappling for some 

2000 years). The information systems world itself, on the other hand, is very often subject to 

the short time horizons of the commercial environment. This means that the requirements 

placed on information systems themselves change at a rapid rate, so that theoretically 

grounded work on ontologies conceived as modules for translating between information 

systems has been unable to keep pace. 

Work in ontology in the information systems world continues to flourish, however, and the 

principal reason for this lies in the fact that its focus on classification and on constraints on 

allowable taxonomies and definitions has proved useful in ways not foreseen by its initial 

progenitors (Guarino and Welty 2000). Automation requires a higher degree of accuracy in 

the description of its procedures, and ontology is a mechanism for helping to achieve this. 

The attempt to develop terminological standards, which means the provision of explicit 

specifications of the meanings of terms, loses nothing of its urgency in application domains 

such as medicine or air traffic control, even when the original goal of a common ontology 

embracing all such domains has been set to one side.  

Ontology also goes by other names, so that the building of ontologies has much in common 

with work on what are still called ‘conceptual schemes’ in database design, or on ‘models of 
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application domains’ in software engineering, or on ‘class models’ in object-oriented 

software design. The designers of large databases are increasingly using ontological methods 

as part of their effort to impose constraints on data in such a way that bodies of data derived 

from different sources will be rendered mutually compatible from the start. Ontological 

methods are used also in the formalization of standards at the level of metadata, where the 

goal is to provide in systematic fashion information about the data with which one deals, for 

example as concerns its quality, origin, nature and mode of access. 

Ontological methods may have implications also for the writing of software. If you have 

gone to the trouble of constructing an ontology for purposes of integrating existing 

information systems, this ontology can itself be used as a basis for writing software that can 

replace those old systems, with anticipated gains in efficiency.  

Ontological methods have been applied also to the problems of extracting information for 

example from large libraries of medical or scientific literature, or to the problems of 

navigation on the Internet, not least in the already mentioned work on the so-called semantic 

web. The latter aims to use ontology as a tool for taming the immense diversity of sources 

from which Internet content is derived, and here even a small dose of ontological 

regimentation may provide significant benefits to both producers and consumers of on-line 

information.  

Ontological methods have been applied also in the domain of natural language translation, 

where  ontologies continue to prove useful, for example as aids to parsing and 

disambiguation. Nirenburg and Raskin (2001) have developed a methodology for what they 

call ‘ontological semantics’, which seeks to use ontological methods as the basis for a 
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solution to the problem of automated natural language processing, whereby ontology – 

conceived as a ‘constructed world model’ – would provide the framework for unifying the 

needed knowledge modules within a comprehensive system. Thus they use ontology ‘as the 

central resource for extracting and representing meaning of natural language texts, reasoning 

about knowledge derived from texts as well as generating natural language texts based on 

representations of their meaning.’ (op. cit.) 

Efforts continue to be made to use ontology to support business enterprises (Uschold et al. 

1998, Obrst, et al. 2001). Consider a large international banking corporation with subsidiaries 

in different countries throughout the world. The corporation seeks to integrate the 

information systems within its separate parts in order to make them intercommunicable. Here 

again a common ontology is needed in order to provide a shared framework of 

communication, and even here, within the relatively restricted environment of a single 

enterprise, the provision of such a common ontology may be no easy task, in virtue of the fact 

that objects in the realms of finance, credit, securities, collateral and so on are structured and 

partitioned in different ways in different cultures.  

One intensely pursued goal in the information systems ontology world is that of 

establishing methods for automatically generating ontologies (REFERENCES). These 

methods are designed to address the need, given a plurality of standardized vocabularies or 

data dictionaries relating to given domains, to integrate these automatically – for example by 

using statistical corpus methods derived from linguistics – in such a way as to make a single 

database or standardized vocabulary, which is then dubbed an ‘ontology’. 

Here we face again what we have called the problem of fusion. Commercial ontology is 
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not merely a matter of facilitating communication via terminology standardization. It must 

deal also with the problems which arise in virtue of the existence of conflicting sets of 

standards in the domains of objects to which different terminologies refer. Consider for 

example the domain of financial statements. These may be prepared either under the US 

GAAP standard or under the IASC standards which is used in Europe and many other 

countries. Under the two standards, cost items are often allocated to different revenue and 

expenditure categories depending on the tax laws and accounting rules of the countries 

involved. Information systems ontologists have thus far not been able to develop an algorithm 

for the automatic conversion of income statements and balance sheets prepared on the basis 

of the two sets of standards. And why not? Because the presuppositions for the construction 

of such an algorithm simply cannot be found by looking at the two conceptualizations side-

by-side, as it were, and hoping that they will somehow lock themselves together within a 

single ontology on the basis of their immanent formal properties as syntactic objects. Nor will 

semantic investigations, to the extent that these consist in finding set-theoretical models of 

the systems in question in the customary manner, i.e. by working from the terminologies 

outwards towards the models, do the trick. For to fuse two systems of the given sort it is 

necessary to establish how the two relate to some tertium quid – the reality itself, of 

commercial transactions, etc., and to see how the two systems partition this same reality in 

different ways. This means that one must do ontology in something like the traditional 

philosophical way – in this case the ontology, of  assets, debts, net worth and so forth, of 

business firms – before the standard methods of information systems ontology can be applied. 
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Medical Ontology 

The problem of fusion arises, too, in the field of medical informatics. Here information 

systems ontologists seek to provide aids to information retrieval, processing of patient 

records, hospital management, and the like. In medicine, too, different nomenclatures 

(standardized, controlled vocabularies) and classification systems have been developed to 

assist in the coding and retrieval of knowledge gained through research. Such systems face 

difficulties in virtue of the fact that the subject-matter of medicine is vastly more complicated 

than the domain covered by, say, the information system of a large bank. One may thus 

anticipate that some of the theoretically most important advances in information systems 

ontology in the future will be made in the area of medical informatics. 

 Some indication of the problems which need to be confronted in the medical ontology 

domain can be gained by looking at three alternative medical terminology systems, each of 

which is often treated as representing some sort of ontology of the medical domain.15 

 

GALEN 

First is GALEN, for Generalised Architecture for Languages, Encyclopaedias and 

Nomenclatures in Medicine, which uses a description logic called GRAIL provides language, 

terminology, and coding services for clinical applications (http://www.opengalen.org). 

GALEN provides, for example, an ontology of surgical procedures. The surgical process of 

open extraction of an adrenal gland neoplastic lesion is represented as follows: 

SurgicalDeed which 

   isCharacterisedBy (performance whichG  

                                                 
15 I am indebted here to Anita Burgun and Olivier Bodenreider. See their 2001. 
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         isEnactmentOf ((Excising which playsClinicalRole SurgicalRole) whichG < 

     actsSpecificallyOn (NeoplasticLesion whichG 

                        hasSpecificLocation AdrenalGland) 

               hasSpecificSubprocess (SurgicalApproaching whichG  

                     hasSurgicalOpenClosedness (SurgicalOpenClosedness   

 whichG hasAbsoluteState surgicallyOpen))>)) 

The idea underlying GALEN is that it should not replace current medical vocabularities, but 

rather serve as an invisible underlying support, providing better clinical information systems 

but remaining behind the scenes. It provides a new ontological rigorous language designed to 

make it easier to develop and cross-reference classification systems within the medical 

domain.  

 

UMLS 

Second is the Unified Medical Language System (UMLS), which is maintained by the 

National Library of Medicine in Washington DC. UMLS comprehends some 800,000 

biomedical concepts arranged in some 134 semantic types, the concepts themselves being 

defined as clusters of terms (derived, for example, from different natural languages). UMLS 

is a fusion of some 50 source vocabularies from which some ten million inter-concept 

relationships have been taken over. The parent-child hierarchy which is the backbone of 

UMLS is then defined as follows:  

A concept represented by the cluster{x, x′, …}is said to be a child of the concept 

represented by the cluster {y, y′,…} if any of the source terminologies shows a 
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hierarchical relationship between x and y. 

The potentiality for conflict here, given that the UMLS source vocabularies were developed 

independently of each other (and are of varying quality) is clear. 

SNOMED 

Finally we can mention SNOMED, or Systematized Nomenclature of Medicine, which is 

maintained by the College of American Pathologists and is designed as ‘a common reference 

point for comparison and aggregation of data throughout the entire healthcare process’. 

SNOMED has been applied especially to the project of developing electronic patient record 

systems and comprehends some 121,000 concepts and 340,000 interconcept relationships. 

 

Blood 

Let us now see how each of these terminology systems localizes blood in its concept 

hierarchy. For the sake of comparison we note that blood in Cyc is categorized as a mixture: 

Blood genls Mixture genls TangibleThing 

Mixture isa ExistingStuffType 

(Interestingly, blood in WordNet is categorized as one of the four bodily humors, alongside 

phlegm, and yellow and black bile.) 

 In GALEN blood is a Soft Tissue (which is a subcateogy of Substance Tissue, which 

is a subcategory of GeneralizedSubstance).  

 In UMLS – and here we see the effects of constructing UMLS additively, by simply 

fusing together pre-existing source vocabularies – blood is a Body Fluid and a Soft Tissue 

and a Body Substance. Tissue in turn is classified in UMLS as a Fully Formed Anatomical 
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Structure. 

 In SNOMED, blood is a Body Fluid, which is a Liquid Substance, which is a 

Substance Characterized by Physical State. 

 Examination of the hierarchies used especially in UMLS and SNOMED reveals that 

they are marked by what Guarino (1999) has referred to as isa overloading; that is to say, 

they are hierarchies in which subsumption is used to capture such disparate relations as 

identity, categorical inclusion, instance of, part of, and so on. UMLS has been found to 

contain cycles, which is to say: pairs of terms for distinct biomedical phenomena which stand 

in isa relations to each other. Defects of this sort must be eliminated by hand in an ad hoc 

manner, and indeed much of the work devoted to maintaining UMLS and SNOMED has 

consisted in the finding of ad hoc solutions to problems which would never have arisen had a 

robust top-level ontology been established from the start. 

 As should by now be clear, robust terminology system, in medicine or elsewhere, 

cannot be created simply through the fusion or colligation of existing vocabularies or micro-

theories. And the problems raised by the terminological inconsistencies between distinct 

systems of financial or medical or other sorts of documentation cannot be solved by 

examining the separate systems themselves, as conceptual models or syntactic instruments. 

Rather, one needs to look at what the terms involved in each system mean, and this means: 

looking at the corresponding concrete objects and processes in reality. 

 

The Closed World Assumption  

Clearly, it is for practical reasons not possible to include in a database all the facts pertaining 
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to the objects in a given application domain. Some selection must be made and this, rightly, 

takes place on pragmatic grounds. Suppose we have a database that includes facts pertaining 

to object  o, and a user asks whether o is F. The programmer has to decide what sort of 

answer will be shown to the user if the fact that o is F is not recorded in the database. In some 

systems the answer will be something like ‘perhaps’. In some domains, however, it makes 

sense for the database programmer to rely on what is called the closed world assumption, and 

then the answer will be ‘no’. Here the programmer is taking advantage of a simplifying 

assumption to the effect that a formula that is not true in the database is thereby false. This 

closed world assumption ‘is based on the idea that the program contains all the positive 

information about the objects in the domain’ (Shepardson 1988, pp. 26-27).  

The closed world assumption means not only that (to quote Gruber once again) only those 

entities exist which are represented in the system, but also that such entities can possess only 

those properties which are represented in the system.16 It is as if Hamlet, whose hair (we shall 

suppose) is not mentioned in Shakespeare’s play, would be not merely neither bald nor non-

bald, but would somehow have no properties at all as far as hair is concerned. What this 

means, however, is that the objects represented in the system (for example people in a 

database) are not real objects – the objects of flesh and blood we find all around us – at all. 

Rather, they are denatured surrogates, possessing only a finite number of properties (sex, date 

of birth, social security number, marital status, employment status, and the like), and being 

otherwise entirely indeterminate with regard to all those properties and dimensions with 

which the system is not concerned. Objects of the flesh-and-blood sort can in this way be 

                                                 
16 Reiter (1984) formulates the closed world assumption in relation to relational databases as follows: the only 
possible instances of a relation are those implied by the database. He distinguishes in addition what he calls the 
domain closure assumption, to the effect that: the individuals occurring in the database are all and only the 
existing individuals. 
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replaced by tidy tuples. Set-theoretical structures replace reality itself.17  

 Models of systems built on the basis of the closed world assumption are of course 

much simpler targets from a mathematical and programming point of view than any real-

world counterparts. If, however, we wish to construct an ontology of the ripe, messy exterior 

reality of ever-changing flesh-and-blood objects, then the closed world assumption must 

clearly be rejected, even if the programmer’s job thereby becomes much harder.  

 These problems are of obvious significance in the field of medical information 

systems. Let us suppose, for example, that there is no mention of diabetes in a patient record 

within a given database. What should be the answer to the query: ‘Does the patient have 

diabetes?’ Here, clearly, the assumption that all relevant information about the domain of 

discourse is contained in the database cannot be sustained. (Rector and Rogers 2002) 

 

Ontology and Administration 

Perhaps we can resolve our puzzle as to the degree to which information systems ontologists 

are indeed concerned to provide theories which are true of reality – as Patrick Hayes would 

claim – by drawing on a distinction made by Andrew Frank (1997) between two types of 

information systems ontology. On the one hand there are ontologies – like Ontek’s PACIS 

and IFOMIS’s BFO – which were built to represent some pre-existing domain of reality. 

Such ontologies must reflect the properties of the objects within its domain in such a way that 

there obtain substantial and systematic correlations between reality and the ontology itself. 

On the other hand there are administrative information systems, where (as Frank sees it) there 

                                                 
17 Compare Ingarden (1973) on the ‘loci of indeterminacy’ within the stratum of represented objects of a literary 
work. Ingarden uses the fact that fictional objects are always defined partially – and thus exist with certain loci 
of indeterminacy – where real objects are determinate down to the lowest possible differences in every 
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is no reality other than the one created through the system itself. The system is thus, by 

definition, correct.  

Consider the world of banking. Here (let us assume) the only operations possible are the 

ones built into the program and there is no attempt to model connections to an independently 

existing external reality. In an on-line dealing system a deal is only a deal if and only if it 

takes place within the system. The world of deals itself exists within the system itself. For 

many purposes it may indeed be entirely satisfactory to identify a deal with an event of a 

certain sort inside the on-line system. But consider: the definition of a client of a bank is ‘a 

person listed in the database of bank clients’. Here an identification of the given sort seems 

much less tempting. This suggests that Frank’s thesis according to which there is no reality 

other than the one created through the system applies only to administrative systems of a very 

special kind. Thus it applies not to those administrative systems which record events or facts 

obtaining elsewhere, but rather to operational systems, to systems that do things of legal or 

administrative significance within the domain of the system itself. If, now, information 

systems ontology has (post-Hayes) grown up in an environment (e-commerce, the internet) 

where it is precisely the products of such operational systems that have been the primary 

targets of ontological research, then it is clear why many of those involved have become 

accustomed to the idea that ontology is concerned not with some pre-existing reality but 

rather with entities created by information systems themselves.  

Further, as is seen for example in the worlds of financial statements governed by GAAP 

or IASC, there is a high degree of arbitrariness in the creation of entities in the operational 

systems realm, of a sort that is unknown in those realms of pre-existing reality customarily 

                                                                                                                                                        
dimension of their being, as an argument to the effect that idealistic metaphysical positions which see the world 
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dealt with by philosophical ontologists. Moreover, those who have the power to effect fiat 

demarcations – for example the committees who determine what will count as goods or 

services in financial statements – are often themselves muddle-headed from an ontological 

point of view, and their work is not always from of errors of the sort which render impossible 

the construction of robust and consistent ontological hierarchies representing the domains of 

administrative objects which are called into existence by their work. This fact, too, lends 

credence to the anti-theoretical, pragmatic approach by which much information systems 

ontology has thus far been marked.  

The project of theoretically grounded ontology has thus to a degree been sabotaged by the 

concentration on the prescriptions of others. In producing an ontology in such circumstances 

one has a choice between accepting the often only opaquely specified word of the imposing 

authority or attempting to capture a vague specification crisply, via hit or miss, with the 

inevitable danger of mischaractarization and obsolescence. Parallel remarks can be made, too, 

in relation to the construction of ontologies on the basis of linguistic corpora (Guarino 1999). 

Here, too, there is too often too much that is muddled in the source vocabularies and clarity is 

rarely generated from the sheer addition (or ‘fusion’) of large amounts of muddle.  

 

Why Information Systems Ontology Failed 

Given this background, we can point to one further reason why the project of a common 

ontology which would be accepted by many different information communities in many 

different domains has failed. Not all conceptualizations are equal. What the customer says is 

not always true; indeed it is not always sufficiently coherent to be even in the market for 

                                                                                                                                                        
as being constructed in a manner analogous to the construction of fictional worlds must be wrong. 
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being true. Bad conceptualizations abound (rooted in error, myth-making, Irish fairy-tales, 

astrological prophecy, or in hype, bad linguistics, over-tolerant dictionaries, or antiquated 

information systems based on dubious foundations). Such conceptualisations deal only with 

created (pseudo-)domains, and not with any transcendent reality beyond.  

Consider, against this background, the project of developing a unified information 

systems ontology, a common ontological backbone constructed in the additive manner by 

fusing or combining existing conceptualizations or micro-theories constructed elsewhere for 

any one of a variety of what were often non-ontological purposes. This project now begins to 

appear rather like the attempt to find some highest common denominator that would be 

shared in common by a plurality of true and false theories. Seen in this light, the principal 

reason for the failure of attempts to construct information systems ontologies lies precisely in 

the fact that these attempts were made on the basis of a methodology which treated all 

conceptualizations on an equal footing and thus overlooked the degree to which the different 

conceptualizations which have served as inputs to ontology are likely to be not only of wildly 

differing quality but also mutually inconsistent.  

 

What can Information Scientists learn from Philosophical Ontologists? 

Just as we can define artificial intelligence à la McCarthy and Hayes as the continuation of 

logic by other means, so information systems ontology can be defined, similarly, as the 

continuation of traditional ontology by other problems. This means that many of the problems 

faced by information systems ontologists  are analogues of problems dealt with by 
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philosophers in the 2000 year history of traditional ontology – problems pertaining to 

identity, to universals and particulars, to actuality and possibility – as well as the problem of 

realism and idealism, or in other words the problem of the relationship between our 

representations of reality and this reality itself.  

Divorcing Ontology from Reality – Ontology in Knowledge Representation 

Gruber’s work exemplifies a move made by many information systems ontologists away 

from the principle captured in the Ontologist’s Credo and towards a conception of ontology 

as a discipline concerned not with reality itself but with well-behaved reality surrogates. The 

strongest pressure in this direction has been felt in the field of knowledge representation, 

currently one of the most important areas of ontological research in the information systems 

field. Many thinkers in the knowledge representation field have come to hold, with Gruber 

(1995), that: ‘For AI systems what “exists” is that which can be represented’, and this means: 

represented within whatever formal system one is currently using.  

The debate over the correct conception of information systems ontologies would then be 

an almost exact parallel of the philosophers’ debate over the correct conception of realism 

and idealism. Briefly, the idealist argues that we can know reality only through our concepts 

(or language, or ideas, or theories). Hence, he infers, we cannot know reality as it is in itself. 

This reasoning is on display for example here: 

whatever we observe, or, more generously, whatever we interact with, is certainly 

not independent of us. This is the problem of reciprocity. Moreover, whatever 

information we retrieve from such interaction is … information about interacted-

with-things. This is the problem of contamination. How then, faced with 



 

 77 

  
 

reciprocity and contamination, can one get entities both independent and 

objective? Clearly, the realist has no direct access to his World. (Fine 1986, p. 

151)  

Information systems ontologists in the wake of Gruber use similar arguments to prove that 

ontology must be focused not on the world of objects but rather on our knowledge and beliefs 

– on the concepts or languages we use when we talk about this world. It is in this light that 

we are to interpret passages such as the following: 

an ontology is a description (like a formal specification of a program) of the 

concepts and relationships that can exist for an agent or a community of agents. 

This … is certainly a different sense of the word than its use in philosophy. 

(Gruber, n.d.) 

Thus  the information systems ontologist asserts:  

We can represent entities in our system only insofar as they are referred to by 

means of the canonical vocabulary at our disposal. 

Therefore, 

We cannot represent in our system entities as they are in themselves. 

Therefore, 

Ontology must deal not with reality, but rather only with our concepts thereof. 

The flaw in all of the above is exposed by David Stove when he points out that we could 

reason analogously as follows: 

We can eat oysters only insofar as they are brought under the physiological and 
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chemical conditions which are the presuppositions of the possibility of being 

eaten. 

Therefore, 

We cannot eat oysters as they are in themselves. (Stove 1991, pp. 151, 161; cf. 

Franklin, forthcoming) 

The thesis of information systems ontologists according to which to existmeans to be 

represented in a system echoes also the arguments of Fodor (1980) in favor of the adoption 

by cognitive psychologists of the research program of ‘methodological solipsism’. According 

to Fodor only immanentistically conceived mental states and processes can properly figure 

within the domain of a truly scientific psychology, since to include also transcendent reality 

would so explode the boundaries of the discipline of psychology as to make the discovery of 

scientific laws (read: the construction of efficient programs) impossible.  

Should Information Systems Ontologists Take Philosophers Seriously 

Some ontological engineers have recognized that they can improve their models by drawing 

on the results of the philosophical work in ontology carried out over the last 2000 years.18 

This does not mean that they are ready to abandon their pragmatic perspective. Rather, they 

see it as useful to employ a wider repertoire of ontological theories and frameworks, so that 

they are willing to be maximally opportunistic in their selection of resources for purposes of 

ontology-construction. Guarino and his collaborators use standard philosophical analyses of 

notions such as identity, part-whole relations, ontological dependence, set-theoretical 

subsumption and the like in order to expose inconsistencies in ontologies proposed by others, 

                                                 
18 In addition to the work of Guarino and his co-authors referred to already above, see: Degen, Heller and Herre 
2001, Milton 2000, Milton and Kazmierczak 1998. 
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and they go on from there to derive the meta-level constraints which all ontologies must 

satisfy if they are to avoid inconsistencies of the sorts exposed. 

Given what was said above, however, it appears that information ontologists may have sound 

pragmatic reasons to take the philosopher ontologist’s traditional concern for truth more 

seriously still. For the very abandonment of the focus on mere conceptualisations and on 

conceptualisation-generated object-surrogates may itself have positive pragmatic 

consequences – not least in terms of greater stability of the software artefacts which result. 

This applies even in the world of administrative objects – for example in relation to the 

already mentioned GAAP/IASC integration problems – where the ontologist is working in a 

theoretical context where, as we saw, he must move back and forth between distinct 

conceptualisations, and where he can find the means to link the two together only by looking 

at their common objects of reference in the real world of actual financial transactions. A pre-

existing ontology of these common objects of reference in something like the philosophical 

sense would spare considerable effort in the construction of the needed information systems 

ontology.  

 To put the point another way: it is precisely because good conceptualizations are 

transparent to reality that they have a reasonable chance of being integrated together in robust 

fashion into a single unitary ontological system. The fact that the real world itself plays a 

significant role in ensuring the unifiability of our separate ontologies thus implies that, if we 

are to accept any form of conceptualization-based methodology as one stepping stone 

towards the construction of adequate ontologies, then we must abandon the attitude of 

tolerance towards both good and bad conceptualizations, and concern themselves only with 
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conceptualizations which are indeed transparent to reality. 

 Of course to zero in on good conceptualizations is no easy matter. There is no Geiger-

counter-like device which can be used for automatically detecting truth. Rather, we have to 

rely at any give stage on our best endeavors – which means concentrating above all on the 

work of natural scientists – and proceed in careful, critical and fallibilistic fashion from there, 

hoping to move gradually closer to the truth via an incremental process of theory 

construction, criticism, testing, and amendment, and also through the consideration of 

theories directed towards the same domain of reality but on different levels of granularity. It 

will be necessary also to look beyond natural science in order that our ontology can 

comprehend also those objects (such as societies, institutions and concrete and abstract 

artefacts) which exist at levels of granularity distinct from those which readily lend 

themselves to natural-scientific inquiry. Our best candidates for good conceptualizations will 

however remain close to those of the natural sciences – so that we are, in a sense, brought 

back to Quine, for whom the job of the ontologist is identified precisely with the task of 

establishing the ontological commitments of scientists, and of scientists alone.  

 Ontology in information science must in any case find ways to counteract existing 

tendencies to treat all conceptualizations on an equal footing. Thus it should not, as has been 

customary, take as its starting point the surrogate worlds which have been constructed inside 

existing software models (or inside people’s heads). Rather, as we have seen, it should 

address reality itself, drawing on the wealth of scientific descriptions of the different 

dimensions of this reality, with the goal of establishing, not only how these various 

dimensions of objects, relations, processes and properties are linked together, but also how 
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they are related to the manifest image of common sense. 

 

What Can Philosophers Learn from Information Systems Ontologists? 

Developments in modal, temporal and dynamic logics as also in linear, substructural and 

paraconsistent logics have demonstrated the degree to which advances in computer science 

can yield benefits in logic – benefits not only of a strictly technical nature, but also 

sometimes of wider philosophical significance. Something similar can be true, I suggest, in 

relation to the developments in ontological engineering referred to above. The example of the 

successes and failures of information systems ontologists can first of all help to encourage 

existing tendencies in philosophical ontology (nowadays often grouped together under the 

heading ‘analytic metaphysics’) towards opening up new domains of investigation, for 

example the domain of social institutions (Mulligan 1987, Searle 1995), of patterns 

(Johansson 1998), of artefacts (Dipert 1993, Simons and Dement 1996), of dependence and 

instantiation (Mertz 1996), of holes (Casati and Varzi 1994), and parts (Simons 1987). 

Secondly, it can shed new light on the many existing contributions to ontology, from 

Aristotle to Goclenius and beyond (Burkhardt and Smith 1991), whose significance was for a 

long time neglected by philosophers in the shadow of Kant and other enemies of 

metaphysics.19 Thirdly, if philosophical ontology can properly be conceived as a kind of 

generalized chemistry, then information systems can help to fill one important gap in 

ontology as it has been practiced thus far, which lies in the absence of any analogue of 

chemical experimentation. For one can, as C. S. Peirce remarked (1933, 4.530), ‘make exact 

experiments upon uniform diagrams’. The new tools of ontological engineering might help us 

                                                 
19 See also Ashenhurst 1996. 
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to realize Peirce’s vision of a time when operations upon diagrams will ‘take the place of the 

experiments upon real things that one performs in chemical and physical research.’ The 

problem of devising ontological theories adequate to the needs of information science 

provides the analogue of experimental test in a field which has thus far been amenable only to 

that sort of evaluation which flows from considerations of the logical and argumentative 

qualities of a theory. 

Finally, the lessons drawn from information systems ontology can support the efforts 

of those philosophers who have concerned themselves not only with the development of 

ontological theories, but also – in a field sometimes called ‘applied ontology’ (Koepsell 

1999) – with the application of such theories in domains such as law, or commerce, or 

medicine. The tools of philosophical ontology have been applied to solve practical problems, 

for example concerning the nature of intellectual property or concerning the classification of 

the human foetus at different stages of its development. Collaboration with information 

systems ontologists can support such ventures in a variety of ways, first of all because the 

results achieved in specific application-domains can provide stimulation for philosophers,20 

but also – and not least importantly – because information systems ontology is itself an 

enormous new field of practical application that is crying out to be explored by the methods 

of rigorous philosophy.  
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